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Chapter 1

Introduction

From the title of the thesis it is clear that the basic aspect underlying all the
mathematical derivations and conclusions of the thesis is insurance. Insurance is
a service which is provided by some commercial organization, called the insurance
company. The service takes the form of an insurance contract (also called a policy
or a set of policies), which can be sold to an individual or some organization
(policyholder). The main idea of the insurance contract is to transfer the risk of
the policyholder (insured risk) to the insurance company. Hence, the contract is
an obligation for the insurance company to cover the loss which is produced by
the insured risk of the policyholder in case it occurs during the entire life of the
contract. For a certain amount of money (the price of the insurance contract,
which is also called the premium) the individual (or organization) transfers its
personal risk to the insurance company for a fixed period of time, which is specified
in the contract. Speaking of risk demonstrates that an insurance contract deals
with uncertain events. That is why statistics plays an important role in this area.

It is useful to mention a specific type of an insurance contract, which is con-
cluded between two insurance companies. Such a contract is called a reinsurance
contract and has the same idea as the simple insurance contract, but now the role
of the individual is played by an insurance company. For instance, one insurance
company transfers part of its risk to another (bigger) company in order to protect
against huge losses and hence giving itself the possibility to offer higher protection
to its own clients than the company could have been giving otherwise.

Insurance nowadays has become a very powerful tool in financial management.
Using the insurance contracts, companies can decrease the uncertainty factor in
their business. It significantly simplifies the internal control of the different types
of risks and reduces the possibility of insolvency. For individuals, insurance, in
addition to its main goal, plays a great psychological role. In modern society
more and more people become risk averse. They agree to pay a fixed amount
of money (which is even larger than the expected value of the insured risk) to
reduce the uncertainty factor from their lifes. It is not far from reality to say that

9



10 CHAPTER 1. INTRODUCTION

insurance is becoming part of our life. More and more countries obligate citizens to
insure certain types of risks (for instance in some countries the common obligated
insurances are health and third-party liability insurance for drivers), and people
like it, it is handy and simple.

As a result a lot of new insurance companies have been born. Millions of people
are obligated to insure their risks which gives rise to huge insurance portfolios
with complicated structures and complex internal relationships. Due to involved
uncertainty, mathematical models with a stochastic element became very popular
in the insurance practice. Whole departments in the large insurance companies
were organized to measure and control risks for different lines-of-business.

Consequently (says the European Commission), existing solvency require-
ments (the requirements for the reserve level, so calledMinimum Guarantee Fund)
fail to provide the necessary level of policyholder protection. This is actually not
a shocking surprise since the current solvency regime was introduced in the early
1970s when insurance was not so extremely powerful and complicated as nowa-
days. New solvency regulations (Solvency II) are going to be introduced in order
to control the modern insurance (financial) world of the European Union. In con-
trast with Solvency I, Solvency II envisages to introduce risk management as a
basic tool for the capital requirement evaluation.

All this makes risk management very important. Insurance companies need
new, more advanced modeling techniques, more complicated risk control strate-
gies, which could provide better approximations of reality.

This thesis investigates a new insurance modeling technique which can be
viewed as a generalisation of the classical theory. Before introducing the new
model, we present the description of the basic, well known classical insurance
modeling theory.

1.1 Classical insurance modeling theory

Let us consider the insurance portfolio of some large insurance company. The
whole portfolio can be presented as a final set of policyholders which bought the
insurance contracts and transferred their personal risks to the insurance company.
Each policyholder is a potential source of loss for the insurance company, and
during some reference period (let us say one year) they altogether produce the
aggregate sum of their possible claims. That is why it is natural to model the
insurance risk by some random variable, and the main interest for the insurance
company is to analyse the behavior of the aggregated sum of all the possible
claims, which are modeled by the random variables.

There are two major approaches in the classical insurance modeling. The first
approach is the individual risk modeling.

In the individual risk model we denote by n the total number of insurance
policies. Each policy ’has a chance’ to produce a claim during the entire life of
the contract. The claim which is made in respect of the policy i we denote by Xi,
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with i = 1, . . . , n. Then the total (or aggregate) claim amount at the end of the
reference period is

S = X1 +X2 + · · ·+Xn. (1.1)

Often Xi is presented as
Xi = IiCi. (1.2)

The random variable Ii is an indicator which defines whether or not the ith policy
produced at least one claim. If no claim has occurred, then Ii = 0; otherwise,
Ii = 1. The random variable Ci can have an arbitrary distribution and represents
the total amount of the payment in respect of the ith policy. So, one Ci can
consist of several claims.

The model is individual in a sense that all the policies are included in the
model and each policy is considered individually. The individual model is not
efficient from the calculational point of view. Analyzing huge portfolios can take
a lot of time even when claims occur very seldom.

The alternative model, which also describes the total claim amount in a fixed
period of insurance contracts, is the collective risk model. Let N denote the
number of claims arising from policies during the reference period. Let C1 denote
the amount of the first claim, C2 the amount of the second claim and so on. In
the collective risk model, the random sum

S = C1 + C2 + · · ·+ CN (1.3)

represents the aggregate claims generated by the portfolio for the considered pe-
riod.

Now we do not speak about the separate (individual) policies. Instead, we
consider the number of claims which occurred during the reference period (this
number is not known in advance and modeled by a random variable N). We do
not specify which claim arises from which policy. Therefore, each policy can have
several claims during the reference period. In a collective model, the individual
information of the considered policies is hidden. Instead, we get complete infor-
mation about the number of claims together with their sizes, which is hidden in
an individual model. Therefore, each model (individual or collective) carries dif-
ferent types of information and both of them can find an application, depending
on the situation.

The main advantage of a collective risk model is that it is more efficient from
the calculational point of view in case S has to be simulated. We do not need
anymore to consider each policy separately even if it has not produced any claims.
Instead, we consider only real claims, which did occur in reality.

1.2 Models and assumptions
So far we have described the classical insurance modeling in a very general way.
We have not introduced any distributional assumptions and have not specified
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any relationships between the random variables involved. We are going to start
this section by describing the general assumptions which are mostly used in the
classical modeling.

All the assumptions we divide into two parts. The first one deals with the
distributional assumptions for the random variables involved (the claim sizes and
the number of claims (in the collective risk model case)), which are commonly
used in practice. As a second part we consider the relationships between the
random variables within the models considered.

The most simple random variables which were introduced in the individual risk
model are Ii, with i = 1, . . . , n. These are indicator random variables (naturally
having the Bernoulli distribution), which can take one of two values, 1 or 0. For
a single random variable Ii, the value 1 occurs with probability pi, and 0 with
probability 1 − pi. Therefore it is possible to specify the occurrence probability
for each policy individually, but usually all the Ii’s, i = 1, . . . , n are assumed to
be identically distributed as some random variable I, with P (I = 1) = p and
P (I = 0) = 1− p. Such random variables are included only in the individual risk
models.

The random variables which occur both in the individual and collective models,
are the claim sizes Ci, with i = 1, . . . , n in the individual model case, and with
i = 1, . . . , N in the collective model case. In general, every distribution with
non-negative values only can be considered as a claim size distribution, but there
are several additional features which are very desirable in the modeling of the
claim size. As an example we can mention closedness under convolution (which
significantly simplifies matters when analyzing the aggregate distribution), and
positive skewness, which is a quite common feature for insurance data. There are
quite a few families of distributions available in literature. In Kaas et al. [2001]
various types of distributions are described which are often used in the insurance
practice. Reijnen et al. [2005] contains an overview of the classical and some new
assumptions for the claim size modeling. The classical, well-known, candidates for
the claim size distribution are the Gamma, Log-normal and Pareto distributions.
As an alternative can be considered the Weibull, Burr and Inverse Gaussian (IG)
distributions.

The last distributional assumption of the classical modeling which is going
to be discussed in this section, is the assumption for the random variable N , the
number of claims in a collective risk model. The most common assumptions for N
are Poisson, binomial and negative binomial distributions. In case N is assumed
to be Poisson, the distribution of S is called a compound Poisson distribution. In
case N is (negative) binomialy distributed, S has a compound (negative) binomial
distribution.

The second part of the assumptions which are described here, is the relation-
ships between the random variables within the considered models. The random
variables in the model can be independent or dependent (correlated) or, it can
be a mixture of dependent and independent variables. In the classical models
everything is simple, all the variables are assumed to be mutually independent.
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In the individual risk model I1, . . . , In, C1, . . . , Cn are independent, while in the
collective risk model N,C1, . . . are independent.

However, this does not mean that people who apply these models, do not
believe in a possible correlation between the random variables. Dependencies
do occur in practice. For examples we can refer to Albers et al. [2008] where
were mentioned such examples as man and wife which are both insured in the
same portfolio, carpoolers using a collective company insurance, catastrophes like
hurricanes or floods hitting huge numbers of insured at the same time. People
clearly realize that, but often do not introduce any dependence structure in the
model. The argument is that dependence does not have much influence on the final
result and, moreover, significantly complicates all the calculations. Nevertheless,
different types of dependencies have been a subject for study for quite some time.
Dhaene et al. [2002a,b] investigate the dependence by using the comonotonicity
approach. Hayne [2007] introduces the dependence structure called a shock model,
in which claims from different lines of insurance are linked by a common variation
(or shock) in the parameters of each of these lines. Copula models have become a
popular alternative in the modeling of dependencies between random variables. A
copula is a function that represents a joint distribution of random variables with
uniform marginal distributions, specifying the underlying dependence structure.
The first books in this area were written by Joe [1997] and Nelsen [1999]. More
information can be found e.g. in Lindskog [2000] or Embrechts et al. [2003].

All these studies clearly demonstrate that the effects of dependence on some
insurance (financial) products can be really huge. However, some arguments can
still be suggested against the introduction of dependence. In most cases the de-
pendency structure significantly complicates all the calculations. The distribution
of the aggregate sum S usually takes a very complicated form and often does not
have an explicit formula. Moreover, it can be stated that such strong dependen-
cies rarely occur in practice. In most cases dependence will be ignored anyway,
and as long as dependence effects are ’small in average’, the effects on relevant
risks (financial or insurance products) are small as well.

Precisely this optimism was crushed in Albers [1999], using local dependence
models. Assuming that on average 1% − 5% (which can be considered a small
fraction) of the total portfolio claims arise due to dependence , the author showed
that Stop-Loss premiums increase by a factor (not a percentage!) 2−6, compared
to the independent case. This was a strong signal to take small dependencies
seriously and to continue investigation in same direction. This thesis is part of
that investigation. The same approach to dependence is analyzed here in detail
and extended to more general and flexible models.

Our approach to dependence inside the insurance portfolio differs a bit from
the models which were mentioned above. The main goal of our research is to
concentrate on weak forms of dependence, in between the independence model
and the comonotonic case. In fact, on the scale independent-comonotone our
models are still close to the independent end-point. The basic assumption of our
modeling technique is the possibility of claims occurring in groups. To be more
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precise, we assume that the claims can be of two types. The first type are the
individual (ordinary or ’simple’) claims. These claims arise one by one and all time
points (times when the claims arise) and claim sizes are mutually independent.
The sum of such claims in itself can be the individual or collective model. The
second type of claims are group claims (’special’ claims). We assume that during
a single time point several claims can come at once. This part can be seen as a
comonotonic part: a whole group has damage. By considering such possibility we
certainly introduce positive correlation between the random time points (times at
which the claims arrive).

The idea is that claims can arise as a group due to some special cause. As an
example of such a special cause we can mention a car crash when more than one
car from the same insurer is involved in the accident. Couples or family members,
usually having the same insurance company, have a similar life style with similar
risks (like travelling together, living in the same house). Bad weather can be
considered as a special cause in car insurance as well. Earthquakes and floods
also fall in the category of the special cause and can be covered by the model.
But these are really extreme cases, which are not of main interest in our research.
The notion of groups is not necessarily linked up with time. Groups may also be
formed on the basis of spatial arguments or otherwise. In this sense our models
are a quite flexible way to describe forms of dependence, see also Albers [1999, p.
175].

So far we explained the influence of a special cause on the total number of
claims, but it is certainly possible to introduce an influence on the claim sizes as
well. It is noted by some insurance companies that bad weather conditions (heavy
rain or fog) not only increase the number of claims, but also decrease the average
claim sizes. This means that people indeed produce more car accidents during
bad weather, but the damages are smaller on average. On the other hand, the
opposite also occurs. In some cases the special cause can significantly increase
the claim sizes of the involved policyholders. An example could be a workers
compensation insurance, where the ordinary claims can be small, compared to
the ’special’ claims, which can occur (for instance) due to some explosion in the
laboratory.

In general, the group size can be any positive integer, but we mostly concen-
trate on relatively small groups of average size 5-20. Moreover, we assume that
the expected number of special claims is small as well (1%− 5% of the expected
total number of claims). Such a setup first time was introduced in Albers [1999].
The research was continued with Reijnen’s [2003] master thesis, which was par-
tially summarized in Reijnen et al. [2005]. The present thesis can be considered
as a continuation of that work. Therefore, to make it self-contained, we briefly
describe the work which has been done before. We start with the description of
the technical development of the models.
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1.3 Development of the models
In this section we present a somewhat more technical development of the depen-
dence model, which first time was introduced in Albers [1999]. More details will
be given in Chapter 3. The same model, in a slightly modified form and with dif-
ferent distributional assumptions appeared later in Reijnen et al. [2005]. During
our research the model was generalized several times. Each generalization, in fact,
can be considered as a separate model with its own specific features. Therefore
we point out three different forms, which can find an application in different fields
of insurance modeling.

First briefly consider the independence model (later we will call it Model 1).
Consider a large insurance portfolio with n insured members (policyholders). Each
of these members has a small probability p to submit a claim C, which is modeled
by a random variable. The aggregate sum of all the claims during some reference
period (let say one year) can be represented as

S =
N∑
i=1

Ci. (1.4)

All random variables which are involved in the model (i.e. N,C1, C2, . . .), are in-
dependent, N represents the total number of claims (usually following a binomial
or Poisson distribution) and all the Ci’s are distributed as C for all i = 1, . . ..
This is a general form of the collective risk model, which will be used as basis
for our dependence model. We do not introduce any specific distribution for the
claim sizes Ci since it is not an essential point at this stage.

To introduce dependence, Albers [1999] assumed that the whole portfolio can
be divided into several groups of a fixed size g with similar (dependent) risks.
Since n is assumed to be large, the total number of groups h = n/g, without loss
of generality, is assumed to be an integer. Different group sizes represent different
situations of dependent risk, which can occur in practice. For example, g = 2
can be assumed to model the dependent risk of couples, g = 4 can represent car
crashes, g = 200 can be used in a modeling of a plain crash, etc. The extreme
case g = n can occur in the form of a catastrophe, when all the members in the
insurance portfolio fall in the same dependence group. Now, the aggregate sum
of the claims takes a form

S =
h∑
k=1

g∑
i=1

Yik, (1.5)

where
Yik = (1− Vk)XikCik + VkZikDik,

for i = 1, . . . , g and k = 1, . . . , h. All V1, . . . , Vh, X11, . . . , Xgh, Z11, . . . , Zgh,
C11, . . . , Cgh, D11, . . . , Dgh are assumed here to be independent. Basically Yik
represents a single claim (’simple’ or ’special’) in case one has occurred during
the reference period, or no claim otherwise. Here the author utilizes three types
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of indicator random variables. The first one, Vk, represents occurrence of a spe-
cial cause (for the discussion about the possible special causes see the previous
section), affecting the k-th group with probability

P (Vk = 1) = 1− P (Vk = 0) = θk,

where θk are supposed to be small and usually assumed to be the same, i.e. equal
to some θ for all k = 1, . . . , h. Both the Xik’s and Zik’s (with P (Xik = 1) =
1− P (Xik = 0) = q and P (Zik = 1) = 1− P (Zik = 0) = r for all i = 1, . . . , g and
k = 1, . . . , h) are indicator random variables, indicating the death (in case of a
life insurance or submission of a claim in case of a non-life insurance) of the i-th
policyholder in the k-th group during the reference period. The random variable
which indicates occurrence of any claim (’simple’ or ’special’) is denoted by

Iik = (1− Vk)Xik + VkZik,

with P (Iik = 1) = 1−P (Iik = 0) = (1− θ)q+ θr = p. In case the distributions of
all the Cik’s and Dik’s are assumed to be the same, the model can be written as

S =
h∑
k=1

g∑
i=1

IikCik,

which form is very similar to the independent risk model.
To introduce a more intuitive way of defining the volume of dependence, a

new parameter

ε = P (VkZik = 1|Iik = 1)

was introduced by the author. Typically, ε will be small, at most a few percent,
and ε = 0 will represent the boundary case of independence. Note that θ = εp/r,
implying that θ runs from the extremely small εp to ε itself.

Using these indicators, the whole portfolio is divided into an individual (inde-
pendent) and a common (dependent) part and dependence is introduced through
the Vk’s. The structure of the model allows to introduce different assumptions for
the distributions of the claim sizes of the dependent and the independent parts.
However, in most cases the claim sizes are assumed to be identically distributed
and the normal distribution was used to illustrate the impact of dependence on
the different kinds of SLP ’s.

In the paper the author also shows how the model is related to different, well
known types of dependence models (some of them were mentioned in the previous
section). We refer to Albers [1999] for the description of these relationships.

A similar (with the same approach to dependence) model, in a slightly different
form and with different distributional assumptions, appeared later in Reijnen et al.
[2005]. The total aggregate sum of all the claims was presented there as

S =
gW∑
i=1

Di +
n−gW∑
j=1

XjCj , (1.6)
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with P (Xj = 1) = 1 − P (Xj = 0) = q, h = n/g and W ∼ binomial(h, θ).
Note that parameters q, g, and θ have similar but not the same values when
compared with the parameters from model (1.5). Now the model is divided into
two parts. In the first part the total claim sizes Di’s include both the ’simple’
(independent) and the ’special’ (dependent) claims. Therefore, it is natural to
take the Di’s stochastically larger than the Cj ’s, which are the ’simple’ claims
of the independent part: those who have no ’special’ claims. That is why the
Di’s and Cj ’s are assumed to come from the same family of distributions (in
the paper they assumed to be lognormal), have the same skewness, but different
expectations. All the Di’s are identically distributed, and the same holds for both
the Cj ’s and the Xj ’s as well. Moreover the Di’s, Cj ’s and Xj ’s are independent.
The random variables Xj indicate the occurrence of (at least one) individual claim
in the second part of the model. The W defines the random number of groups
of a common risk and is independent of the Di’s, Cj ’s and Xj ’s. Note that the
model assumes that all the group members submit at least one claim due to the
special cause. This is one of the features which distinguishes models (1.5) and
(1.6). Speaking about differences, it is clear that model (1.6) is a collective model.
In model (1.5) the potential groups have to be defined beforehand, which is often
very hard (or even impossible) to do. Model (1.6) uses the collective approach.
Therefore, it deals directly with claims which occurred in reality. In that sense
model (1.6) can be applied more easily in practice.

The model which is considered in the present thesis has a slightly different
structure than models (1.5) and (1.6). Generally, we would like to point out three
different forms of the same model, which in a sense can be considered as separate
models with their own specific features. The first form of the model (we call it
Model 2) is written as

S =
N∑
i=1

Ci +
H∑
k=1

g∑
j=1

Dkj . (1.7)

It is a collective model, just like (1.6), and it is clearly divided into two parts, but
now the two parts refer to the independent and dependent claims and the depen-
dent part does not contain independent claims. Therefore we will often assume
the same distribution for the claim sizes Ci and Dkj . This feature significantly
simplifies all the calculations. Therefore, it will be a typical assumption in the
entire thesis. The random variables N,C1, . . . ,H,D11, . . . are independent. In the
previous models n was assumed to be large and p typically was small. It allows
us to replace the binomial distribution, which appeared in model (1.6), by the
Poisson distribution. Hence, the total number of ’simple’ claims is written now
as N ∼ P (np(1 − ε)), and the number of groups H ∼ P (εnpg ). The parameter ε
appears here in a very natural way, representing the expected percentage of the
’special’ claims, compared to the total expected number of claims. Parameters n
and p everywhere appear together, as a product. Therefore it is natural to replace
np (the total expected number of claims) by a single parameter λ. The special
feature of Model 2 is a fixed group size g. Note that g here is similar to the g
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from model (1.6), but completely different from the one in model (1.5), which was
a potential group size. In fact, gr from model (1.5) corresponds to g from model
(1.6) and (1.7). In that sense Model 2 is closer to model (1.6) than to model (1.5).

Certainly, in some situations it is possible (or even necessary) to define fixed
groups of a common risk, but in real life more often we deal with uncertain group
sizes. Often a fixed group size is not a reasonable assumption. The example could
be car crashes due to bad weather (special cause). It is clear that it is impossible
to predict how many cars will crash during a rainy day. Therefore, the second
form of the model (we call it Model 3) assumes that the group sizes are not fixed
but stochastic. We replace the fixed parameter g by a random variable Gk for
each k = 1, . . . ,H. In that sense Model 3 is closer to the model (1.5) where the
author fixed only the potential groups. The real groups (with were formed using
the indicator random variables) were stochastic as well. Model 3 is written as

S =
N∑
i=1

Ci +
H∑
k=1

Gk∑
j=1

Dkj , (1.8)

assuming that all Gk follow the Poisson distribution with a fixed parameter µG.
The random variables N,C1, . . . ,H,G1, . . . , D11, . . . are independent.

The final model (Model 4), has has the same form as Model 3, i.e.

S =
N∑
i=1

Ci +
H∑
k=1

Gk∑
j=1

Dkj . (1.9)

It will be the main object of our investigation, therefore it will be motivated and
explained in a more precise way in Chapter 3. Here we present only the general
form and basic motivation. The main difference between models (1.8) and (1.9) is
the distributional assumption for the group sizes Gk. In Model 3 all the Gk’s were
assumed to be random, following the Poisson distribution with a fixed parameter
µG. Model 4 introduces the overdispersion aspect for the group sizes by changing
the fixed parameter µG into the random variable L with expectation E[L] =
µG. The reason for this step is the heterogeneity of the data considered. While
considering huge insurance portfolios we have to keep in mind that they certainly
include members from different risk levels. An example of this fact could be two
collective contracts which appear in the same portfolio: a university collective
contract and a contract of some construction company. These two contracts,
having completely different risk levels, certainly require different assumptions for
the grouping procedure. In order to reflect this fact in the model, we introduced
a random expectation of the Poisson group sizes. Basically, for each Gk we have a
different Lk, but in the present thesis all the Lk’s are assumed to be independent
and identically distributed (iid). Therefore we will use L as a representative of
all the Lk’s. This step will be motivated in more detail in Chapters 2 and 3.
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1.4 Risk measures

In the previous sections we described models which can be used to model the
aggregate sum of claims S of some insurance portfolio. This sum certainly is
a subject of interest to insurance companies, but very often not the sum itself,
but a function of it attracts more attention. As an example we can consider
(re)insurance products (contracts), the prices of which (premiums) are based on
S. The important feature of insurance business is that premiums are paid by
policyholders in advance, before the insurer pays claims. An insurance company
may get into problems in case the total number of claims during some reference
period exceeds the total premium (the sum of all the premiums which were paid by
policyholders in advance). Therefore, insurance companies have to keep a certain
amount of money in reserve. The amount of reserve is controlled by regulatory
authorities and depends on the volume and type of risk which the insurer has
collected in the portfolio. At the beginning of this chapter we mentioned that in
order to improve policyholders protection, the new solvency regulation is going to
be introduced soon. Solvency II is going to utilize risk management as a basic tool
for the capital requirement evaluation. Consequently, it becomes very important
for insurance companies to analyze their current situation by measuring the total
portfolio risk.

Mathematically, a risk measure is a mapping from a space of random vari-
ables to the real line. It is a tool which interprets a certain risk (modeled by
random variables) by an economically motivated number. Usually risk measures
should satisfy a number of properties, which are considered to be helpful in the
decision making procedure. Following Laeven [2005, p. 2], such properties can
generally be divided into three parts. The first part of properties are the so called
basic rationality properties, such as monotonicity, which intuitively is very im-
portant and is satisfied by most risk measures studied today. The second part
consists of technical properties, such as continuity. These are mostly necessary
for the theoretical analysis (mathematical proofs) and rarely have any economical
interpretation. The third part is the ’intuitive’ part, containing such important
properties as additivity.

In general it is not necessary that a considered risk measure satisfies all the
properties. Usually the properties are chosen according to the specific features of
the risk which is going to be measured by the risk measure constructed. However,
when the risk is defined and all the goals are clear, it is usually not easy to define
a ’best’ risk measure. Different risk measures can have different positive and
negative features, which could be handy in different situations.

One of the risk measures which is quite popular in financial management is
the standard deviation. It has a clear economical interpretation, illustrating the
spread of the risk (values of the random variable) around its expectation. It
certainly gives a lot of information about the investigation target, but has several
important drawbacks. One of them is that it treats the negative and the positive
deviations from the expectation in the same way. This could be a big problem
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when the considered risk is not symmetric. In that case alternative risk measures
like semi-deviation can be used to get a better picture of the considered situation.
Another drawback of the standard deviation can be noticed when applying it with
heavy-tailed distributions, which are widely used in actuarial practice. For such
distributions the standard deviation may not even exist and, in case it does exist,
it certainly does not provide adequate probabilistic information.

In the present research we mostly concentrate on distributions which are far
from the normal, i.e. not symmetric or having heavy tails. This is because the
basic target of our consideration is the random sum of random variables, the dis-
tribution of which is usually far form normal. Moreover, in the previous research,
Albers [1999] and Reijnen et al. [2005] showed that the tail of the distribution is
very sensitive to the dependence effect. It certainly is present everywhere, but in
the tail it simply blows up, which can lead to huge risk underestimation. There-
fore the measures which concern the tail behavior of distributions are of main
interest in the present thesis. The tool which was used by Albers [1999] and
Reijnen et al. [2005] to illustrate the effect of dependence, was the net Stop-Loss
premium (SLP ). From one side, the SLP can be simply considered as a price
(or part of the price) of the reinsurance contract, but it certainly can also serve
as a risk measure, illustrating the tail behavior of the considered quantity. In the
present thesis we continue to use SLP as a basic tool of the dependence analysis.

The idea of a Stop-Loss contract is simple. If S denotes the total risk amount,
the Stop-Loss contract covers the part of this risk which is above some retention
level a. Hence, the total risk S is divided into two parts: retained risk S−(S−a)+

and the Stop-Loss risk (S − a)+ (here (S − a)+ = max(S − a, 0)). If we consider
reinsurance as an application example of the Stop-Loss contract, the reinsurer
gets the risk (S−a)+ and the remaining part S−(S−a)+ is left for the insurance
company which buys the contract. The SLP is defined as E[(S − a)+]. It is
clear that in reality the SLP cannot be the total price of a Stop-Loss contract
because the re-insurer’s position becomes very risky with expected profit 0. Some
positive loading definitely has to be added to the SLP . The value of such loading
depends on many factors and it has to be acceptable for both sides: the insurance
company and the reinsurer. It can be some fixed value or it can depend on
some risk characteristic like mean or standard deviation. Therefore, variance (or
standard deviation) of the Stop-Loss contract is analyzed here as well.

Yet another risk measure which will be used as a tool for the dependence
analysis is the Value at Risk (V aR). This quantity, which is sometimes also called
the Quantile (or Percentile) function, is defined as the inverse of the distribution
function of the considered risk (in our case it is the aggregate sum S). It presents
an upper limit for the aggregated sum of claims, given some probabilistic risk
value. Writing FS(s) = P (S ≤ s), for given p, it is defined by V aR = F−1

S (1−p).
V aR is a popular risk measure in the insurance world. It deals with the tail

behavior of the underlying distribution, which is an important feature in our
research. Moreover, Laeven [2005, p. 117-118] in his thesis illustrated that V aR
arises as the optimal solvency capital requirement in the considered minimization
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problem. Furthermore, as stated in Bouma [2006], the formula used to calculate
the Solvency Capital Requirements is likely to be based on V aR (or Tail Value at
Risk). All this makes V aR an important economic quantity. Thus, it is certainly
important to analyse its behavior taking dependence into account.

1.5 Why do we need approximations?

In the previous section several risk measures were introduced, which in the present
thesis are going to be used as dependence analysis tools. Once the risk measures
have been selected, the next step is to calculate them in practice. This is a
nontrivial exercise, in particular when there is stochastic dependence between
the risks under consideration. All the risk measures which will be considered in
the thesis are basically functions of S, the aggregate sum of all the claims in the
considered insurance portfolio. Therefore, to calculate the chosen risk measure we
have to know the distribution of S. It is well-known that distribution functions of
(random) sums of (dependent) random variables are typically of a complex form.
Albers [1999] showed that even in a very simple case (when the distribution of the
claim sizes is normal and the distribution of the total number of claims is binomial)
the resulting distribution of S can be calculated only numerically. In most cases,
when more complicated (and also more realistic) underlying distributions are
assumed, it is not possible to get an analytical expression for the distribution
of S at all. Simulations might be a solution, but in most situations (since the
target of interest is the tail of distribution) this will be too time consuming.
Moreover, to get a clear picture of how the risk measures actually depend on the
underlying parameters, it does not help much to obtain numerical outcomes for
separate sets of parameter values. With such ‘snapshots’ we will never be able to
grasp the broad underlying picture.

Hence what we need to do is to find approximations to the distribution of
S which possess the following properties. First of all, they are sufficiently accu-
rate to allow using them instead of the exact results. Moreover, they should be
much easier to evaluate. Finally, they should be transparent, in the sense that
they reveal how the various underlying parameters influence the final outcome.
The possibility to perform such sensitivity analyses is of course very important,
possibly even more than the ability to directly and quickly obtain numerical an-
swers for given numerical input combinations. The basic idea in obtaining the
approximations in question will run as follows. Some moments of S can be ob-
tained relatively easily. This will allow us to consider approximations based on
these moments as an alternative calculation method. Several possible approxima-
tion methods (normal power, Edgeworth expansions, gamma, inverse Gaussian
and gamma-inverse Gaussian) were already investigated in Reijnen et al. [2005],
where model (1.6) was used to construct the aggregate sum S. The main goal of
that paper was to find the best approximation (among the ones considered ) of the
SLP and to formulate a relatively simple rule of thumb to choose this optimum
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under the distributional assumptions at hand. As a result, two approximations
(inverse Gaussian and gamma-inverse Gaussian) were selected by the authors.
According to the rule of thumb presented in the paper, these two approximations
cover a wide range of distributional and parametric assumptions. Therefore, these
two approximation techniques are going to be considered in the present thesis as
well as candidates for approximating the distribution function of S when Model
4 is assumed. To judge the accuracy of approximations (and also explain what is
actually a reasonable approximation in our case), we are going to introduce a fixed
criterion, which will have a clear economic interpretation. Approximations which
fall in the range of the criterion, will be accepted as reasonable. Using similar
arguments as in Reijnen et al. [2005] we are going to create a rule of thumb for
Model 4, which will serve as a ’decision-making’ tool for choosing the appropriate
approximation.

1.6 Types of influences on the quantities consid-
ered

In this section we briefly describe different types of influences on the risk measures
considered. Each of the types of influences defined here will be very carefully in-
vestigated in the present thesis. Considering a fixed risk measure (or an insurance
product), we point out three major types of influences. The first one is model
influence.

The calculation procedure of the price of an insurance contract (or some risk
measure) requires a lot of information about the future, which is not available in
the present. By selling a contract, an insurance company is obligated to cover all
future claims (of the types mentioned in the contract) of the buyer, during some
time period (which is also mentioned in the contract). The price of the contract
certainly depends on the number and amount of claims which are expected to
be paid. The precise amount of all the claims is obviously not known (otherwise
the contract price would simply be equal to that amount). Therefore, possible
claims which are going to arise in future are modeled by random variables. The
parameters necessary to characterize these random variables are usually estimated
based on available data about similar claims which have already occurred and were
covered in the past. In this way, using the present (available) information and
introducing a number of assumptions and simplifications, the model defines a
general development rule of the portfolio. When the model is defined, it can be
used to predict the future, validate insurance products, calculate risk measures,
etc. Nevertheless, the contract seller has to keep in mind that the price of the
contract is based on the model, which only is a rough simplification of the real
situation. Models can go from simple to very complicated. The latter describe
reality in more detail, but they still are wrong and being more detailed they
may lead to statistical procedures which are less robust against changes in the
situation, or suffer more from less fortunate data sets used in the estimation
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problem. Several characteristics of models, like soft sensitivity to the underlying
parameters, simple application in practice, are considered to be an advantage,
and of course it is better to have a rough approximation to the right answer
than a mathematically elegant solution for the wrong one. The message here is
that models should neither be too simple nor too complicated. In the first case
modeling loses its goal of describing reality. On the other hand, models should
not be too complicated , as this reduces the possibility of their application in
practice and may lead to a lack of robustness. In our case, the more complicated
models are generalizations of the simpler ones. Therefore they contain more
parameters to be estimated and hence the larger estimation error involved should
be compensated by the better fit to reality. Therefore, speaking about the model
influence, we basically speak about different choices of the model. It is clear
that under such different models we get different contract prices, different risk
measures and different pictures of the portfolio development. Later in the thesis
instead of ’model influence’ a ’dependence effect’ statement will be used. This is
because the main differences between the models considered will be connected with
the dependence structure, which was introduced earlier. Thus, the introduced
dependence will be the main source of the model influence on the quantities
calculated. We refer to Albers [1999] and Reijnen et al. [2005] for illustrative
examples of the dependence effect. Models (1.5) and (1.6) were compared there to
the independence model and the dependence effects were presented using the SLP .
Assuming that on average 1% − 5% (which can be considered a small fraction)
of the total portfolio claims arise due to dependence, the authors showed that
SLP ’s increase by a factor (not a percentage!) 2− 6 when dealing with normally
distributed claim size distributions, or even up to factor 500 for more realistic
skewed claim size distributions.

The second type of influence which is considered in the present thesis is ap-
proximation influence. In the previous section we explained the importance of
approximations in our research. By changing the original distribution of S to
the approximate one, we introduce an additional source of error for the resulting
quantity. This may lead to unexpected results. Therefore, it is very important
to analyze this source of error in detail. Note that when we speak about the
dependence effect, we expect that risk measures like SLP will increase after the
introduction of dependence. This is logical since dependence naturally implies
that the claims stick together and hence the possibility of a much higher total
number of claims increases, which leads to a higher risk in particular with respect
to the tail of the distribution of S. We face a completely different situation while
dealing with the approximation influence. We certainly do not know in advance
whether the final quantity will be increased or decreased after the approximation
is applied. Therefore, as was already stated in the previous section, it is very
important to make the approximation error as small as possible, especially in the
tail of the approximated distribution.

The final type of influence which is going to be investigated here, is estimation
influence (or estimation effect). It is clear that before the model can be applied
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in practice, the parameters of the underlying distributions have to be estimated
from the data. Replacing the true parameters (which are naturally unknown in
practice) by estimated values, we introduce one more source of error. Just as with
ignoring the dependence effect, it is too optimistic to act as if the estimation errors
are negligible (unless we have a very large number of observations). Therefore,
we investigate this source of error as well. As usual in statistics we can give
confidence upper (and lower) bounds for the error induced by estimation.

1.7 Data for the model implementation

In this section we are going to look a bit closer at the application of our models
in practice. More precisely, we are going to discuss possible difficulties which can
arise while applying the models. In general, all the arguments which will be given
here are applicable to all the models with the dependence structure defined in the
thesis. Nevertheless, we shall use Model 4 (which was briefly defined in section 1.3)
as representative for all the models in the discussions and illustrative examples
that follow. Speaking about application difficulties, we are mainly concerned with
the calibration procedure of the model parameters. It is clear that before a model
can be used as a prediction (pricing or validation) tool, all its parameters have to
be calibrated with historical data. At this stage we may face difficulties like lack of
data, when the number of observations is not sufficient for reasonable estimation,
or even worse, complete absence of the needed data. To be consistent, we start
with a general explanation of the parameters involved and a brief description of
the data which are needed for the model implementation.

The general form of Model 4 (see (1.9)) includes two types of random variables.
The first type, which includes N , H and Gk, deals with the number of claims
and the second one, which includes Ci and Dkj , deals with the claim amounts.
Therefore, for convenience all the parameters will be divided into these two parts
as well. First consider the parameters of the number of claims distribution(s). The
distribution of N and H is in Model 4 the same as in Model 3: N ∼ P (λ(1− ε))
and H ∼ P (λε/µG). Here λ is the total expected number of claims, ε is the
expected percentage (in decimals) of special claims and µG is the expected group
size, see also Section 1.3. The precise distribution of Gk has not yet been defined.
Such a definition requires additional motivation, which is going to be introduced
in later chapters of the thesis. Apart from µG the remaining parameters of the
distribution of Gk will be denoted by some abstract vector, called θG. For the Ci
and Dkj several claim size distributions will be considered, see also Section 1.2,
where classical and alternative candidates are presented. As mentioned in Section
1.3 often the same distribution will be taken for C and D. Therefore, we denote
the parameters of their distribution by the abstract vector θC .

As was mentioned before, all these parameters have to be estimated from the
historical data and the estimation error (or even estimation possibility) mostly
depends on the available structure and volume of the data. Therefore, it is hard to
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say something precise about the estimation without seeing the data. Nevertheless,
some general points and possible estimation difficulties can already be mentioned
now. From a first glance it is clear that all parameters can be divided into two
parts in yet another way: the ’easy’ part and the ’complicated’ part. This division
is basically inspired by the dependence information, which is often not easily
available in the data. Therefore, parameters which are included into the ’easy’
part are λ and the θC set. These parameters do not require any information
about the dependence (groups) structure. Parameter λ is the total expected
number of claims which can be easily estimated from any reasonable data set.
The same situation occurs with θC , which are the set of parameters of the claim
size distribution(s). As long as we assume that all the claim sizes (Ci’s and Dik’s)
follow the same distribution (otherwise θC shifts to the ’complicated’ part) it is
quite easy to estimate them as well.

The most difficult part is the estimation of ε and θG. For these parameters, the
data has to include information about the dependence groups. If such information
is not included directly, it has to be possible to distill it from the available data.
Otherwise, estimation is impossible at all. It is very important to have data with
individual information. If the data is aggregated, it is not flexible anymore and it
is impossible to get any information about the dependence structure. Now we are
going to present several examples of possible data sets which more or less satisfy
our requirements. The first example we call a ’perfect’ data set where all the
necessary information is already included (see Table 1.1).

The most important field of the table is the second one, named ’Group code’.
Obviously it is clear that zeroes mean individual claims and numbers define dif-
ferent groups. In this particular example we have 43 groups of sizes 3, 2, 4, . . . , 2.
Having such a data set, we directly get all the information we need for the model
implementation. The field ’Claim amount’ can be used to estimate the total ex-
pected number of claims λ and parameters of the distribution of the claim sizes
θC . The field ’Group code’ contains information which is necessary for the esti-
mation of ε and θG. The main problem is that usually a field like ’Group code’ is
not available in historical data of insurance businesses. This is not a surprise since
advanced modeling of the type we are considering here, is only very slowly getting
introduced in the insurance practice. Data sets which for a long time have been
collected by insurance companies mostly are analyzed with independence models
and do not contain extended information about the claims, which is necessary for
implementation of new models. Therefore we anticipate the fact that informa-
tion about dependence will not be straightforwardly be available in the insurance
databases. In that case it should be possible to derive such information from the
underlying basic data. An example of such a possibility, which is based on workers
compensation insurance, we illustrate in Table 1.2. Here the ’Group code’ field is
created from the ’Date’, ’Incident’ and ’Place’ fields. Therefore, if several equal
accidents happened at the same date and at the same place, we can assume that
they form one dependence group. For instance if in some laboratory there was an
explosion on June 21, the people which got compensation for this accident are in
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Claim amount Group code
75 0
40 0
5 1
9 1
92 1
44 0
50 0
27 0
88 2
42 2
68 0
26 3
27 3
27 3
96 3
35 0
. . . . . .
85 0
92 43
12 43

Table 1.1: Example of the ’perfect’ data set.

the same dependence group.
Note that data sets from Tables 1.1 and 1.2 are only illustrative examples of the

structure which is needed for successful estimation. To get reasonable estimates
we often have to consider data from several years. Moreover, as was already stated
in the previous sections, the notion of groups is not necessarily linked up with
time. Groups may also be formed on the basis of spatial arguments or otherwise.
In this sense our models are a quite flexible way to describe forms of dependence.

1.8 Outline of the thesis

The present thesis considers the advanced actuarial modeling technique which
introduces dependence as a natural extension for the existing independence mod-
els. The structure of dependence considered here is briefly introduced in Chapter
1. A more detailed explanation together with the definition of the main model
can be found in Chapter 3. The form of dependence introduced here is quite
new and differs considerably from the structures available in literature. There-
fore, all the assumptions and generalizations of the model have to be motivated.
This aspect is covered in Chapter 2, where the recommendations are based on an
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Nr Date Name Claim amount Group code Incident Place
1 d1 n1 c1 0 i7 p1
2 d2 n2 c2 0 i2 p2
3 d3 n3 c3 d3.i3.p3 i3 p3
4 d3 n4 c4 d3.i3.p3 i3 p3
5 d3 n5 c5 d3.i3.p3 i3 p3
6 d4 n6 c6 0 i4 p4
7 d4 n7 c7 0 i1 p1
8 d6 n8 c8 0 i6 p4
9 d7 n9 c9 d7.i7.p2 i7 p2
10 d7 n10 c10 d7.i7.p2 i7 p2
11 d8 n11 c11 0 i2 p1
12 d9 n12 c12 d9.i9.p4 i9 p4
13 d9 n13 c13 d9.i9.p4 i9 p4
14 d9 n14 c14 d9.i9.p4 i9 p4
15 d9 n15 c15 d9.i9.p4 i9 p4
16 d9 n16 c16 0 i3 p3
... ... ... ... ... ... ...
18 d10 n18 c18 0 i2 p1
19 d11 n19 c19 d11.i7.p2 i7 p2
20 d11 n20 c20 d11.i7.p2 i7 p2

Table 1.2: Example of creating the "Group code" field from the available infor-
mation.

illustrative example. This concerns a flu epidemic inside some company, intro-
duced as possible realization of our dependence structure. A general scheme of
mutual infection is developed and simulated in order to illustrate and motivate
the distributional assumptions of our model. Calculation aspects are covered in
Chapters 4. Various ways to calculate the risk measures are presented: convolu-
tion methods, simulation and approximations. As already explained in Section
1.5 transparent approximations are a basic tool in this thesis. To apply these
approximations, they should be sufficiently accurate. Chapter 5 is devoted to this
important issue, leading to a simple rule of thumb showing the conditions under
which the approximations work well within the assumed parameter range. Next,
Chapter 6 uses these methods to illustrate and analyze possible consequences of
the dependence and different kinds of impacts to the risk measures. It turns
out that the dependence effect can indeed be very large and that even small de-
pendencies cannot be ignored. For illustrative purposes an example of workers
compensation data is given. In Chapter 7 the estimation problem is treated. The
estimation error is dominated by the part of the parameters related to the special
claims, because by their nature we do not have many observations of them (see
also Section 1.7). Although the estimation error in this way is restricted to a few
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parameters, ε, µG and γG, it is seen that it may be quite substantial. Upper and
lower confidence bounds are given for the risk measures, thus protecting against
the estimation effect. The real data which are supplied by the insurance company
Nationale Nederlanden are analyzed in Chapter 8. Different ways of application
of the model are considered there. The main results and conclusions are presented
in Chapter 9.



Chapter 2

Illustrative example:
an illness contract

In Chapter 1 we briefly introduced the model which will be the main target of
investigation in the present thesis. The structure of the model is based on the
idea of dependence which appeared for the first time in Albers [1999]. That
paper presented strong evidence that even a small amount of dependence can
lead to huge risk underestimation. This finding was a strong signal to take small
dependencies seriously and to continue investigation in the same direction. The
structure of the model, together with its distributional assumptions, were changed
and generalized several times in order to increase its practical relevance. The
original form of the model (see (1.5)) for convenience uses the normal distribution
to model the claim sizes. It is clear that this normality assumption is not the most
realistic one for claim sizes. Nevertheless, the author clearly illustrated that even
under such a ’soft’ assumption, dependence has a strong influence on the resulting
SLP ’s. A more realistic assumption for the claim sizes (lognormal distribution)
was used in Reijnen et al. [2005] and the dependence effect in that case was much
larger.

In our research, the model has experienced several changes which are mostly
related to the dependence part. It is natural to motivate each of such general-
izations from real data. This is obvious, as the assumptions and structure of the
model first of all should be close to reality and real data are representative of
that reality. The main problem is that usually such data (containing information
about the dependence structure) are unavailable. This is not a surprise since ad-
vanced modeling of the type we are considering here, is only very slowly getting
introduced into the insurance practice. Data sets which for a long time have been
collected by insurance companies mostly are analyzed with independence models.
They typically do not (automatically) contain the additional information about
the claims which is necessary for implementation of new models. Therefore, we
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had to consider alternative ways in order to get an idea about certain aspects of
the dependence assumptions.

This chapter is devoted to an illustrative example of a possible dependence
structure. The idea was to create an algorithm which would simulate some con-
crete dependence pattern, illustrating the needed features which are hidden in
the available data sets. Such features are mostly connected to the distributional
assumptions of the random variables which appear in the model. In Model 4
the distributional forms of N and H are already settled: N ∼ P (λ(1 − ε)) and
H ∼ P (λε/µG). Candidates for the distribution of C (and D) are presented in
Section 1.2 of Chapter 1. Finally, G is assumed to be P (L) with L still undeter-
mined. All these distributional assumptions should be motivated, and, as far as
they are not yet defined, some proposals should be given. Here we concentrate on
the distributions of N,H and G, since these concern the new aspect of our model.

In order to get some idea about the behavior of all these random variables, we
are going to simulate a flu epidemic inside a large company, considering several
departments as potential places of the mutual infection. When some worker in
the company is ill, the company is obliged to pay his (her) salary during the
whole period of his illness. This can lead to large losses if the company is hit
by an epidemic, during which a significant part of workers do not work but still
get their salaries. To make a connection with insurance, we consider a Stop-
Loss contract which covers that part of the risk involved which is above some
retention level. The payment which people receive during their illness period can
be considered as claims and the sum of all these claims then is an aggregated
claim amount.

Such a structure perfectly reflects the type of dependence which is considered
in the thesis. The groups of a mutual infection (people which got infection from
each other) are considered as groups of a common risk and claims from people
which got the infection independently or suffer from other types of illness, fall
in the category of independent claims. During the simulation process, which is
described in Section 2.1, we can easily collect the necessary information about
the quantities of interest. Later this information is used to get an idea about
the dependence pattern and possible distributional assumptions for N , H and G.
The main statistical analysis is presented in Section 2.3, where several suggested
distributions are fitted to the simulated data. However, before the statistical
analysis can be applied, the method should pass through several sensitivity tests.
It is important to show that the simulation algorithm is not extremely sensitive
to the input parameters such as the illness probabilities, infection probabilities,
number of days people spend at home during illness, etc. The sensitivity analysis
is performed in Section 2.2. The last section summarizes the main conclusions of
the chapter, which are presented as a motivation for the subsequent research.
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2.1 Simulation algorithm
This section describes the algorithm which will be used later in the data sim-
ulation process. As was already mentioned, the algorithm simulates a local flu
epidemic inside a company. We consider a large company with a fixed number of
workers which are divided into several departments. Each department is consid-
ered as a potential place of mutual infection. Therefore, each working day of each
department will be simulated separately. As the algorithm is analogous for all the
departments, we consider only one of them as a representative. The remaining
departments will be simulated in the same way. Each simulated (working) day of
the department consists of two simulated events: ‘personal infection’ and ‘mutual
infection’, as each person in the department can (with some given probability)
get flu independently (personal infection) or (in case he/she is already infected)
can infect someone else inside the department (mutual infection). For brevity we
will from now on simply write ‘he’ where ‘he/she’ is meant. People who were
infected independently fall in the category of the ’simple’ claims and people who
were infected by infected staff members form dependence groups. If a person
got the infection (no matter in which way), he can infect someone else during a
random number of days which he still spends at work. We assume this number
to be between 0 (if he got flu at home and did not go to work at all) and 3 (if
he stays infected at work for three days). After illness at work follows illness at
home, which is also modeled by a random number. Yet another assumption is
that after illness a person does not fall ill again for two months.

In order to complete the algorithm, values for the input parameters have to be
selected. These parameters are the probability to get flu, the probability to infect
someone and those characterizing illness at work (random number of days) and
illness at home (random number of days). The probability to get flu independently
is assumed to be different for each month. Hence, 12 probabilities are needed in
total (see Table 2.1). The probabilities of mutual infection are assumed to be the

Month Jan-Feb Mar Apr-Sep Oct Nov Dec
Probability 0.005 0.007 0.001 0.008 0.02 0.012

Table 2.1: Monthly probabilities to get flu.

same as the probabilities to get flu independently. Values of illness at work are
random integers between 0 and 3. The corresponding distribution is presented
in Table 2.2. Illness at home is assumed to be a normal random variable with

Nr. of days 0 1 2 3
Probability 0.2 0.5 0.25 0.05

Table 2.2: Probabilities to stay at work for infected person.

mean 5 and variance 3. Of course, it will be rounded to an integer value after it
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is generated and some obvious restrictions (at least 0 and less than 30) have to
be added.

To get a better feeling for the algorithm, we present an example of one simu-
lated day inside the department. The example utilizes several technical notations
(presented by numbers), which form a state of the person. The first number is the
illness state. The possible illness states are presented in Table 2.3. Additionally

State Notation
Healthy 1

Infected at work 2
Infected at home 3

After illness 4

Table 2.3: Several states of a person

to the illness state, each person can be active (denoted by 1 and meaning that
the person can infect someone) or not active (denoted by 0 and meaning that
the person can not infect anybody). The activity state is presented as a second
number of the state of the person. For instance the notation [2, 1] means that the
person is ill while at work (number 2) and has a possibility to infect someone in-
side the department (number 1). There is a possibility of the third number, which
is a group state, meaning that the person was infected by his colleague inside the
department and hence is a member of some dependence group. The value of the
group state corresponds to the ordinal number of the dependence group, which
has been subsequently formed during the reference period. For instance the nota-
tion [2, 0, 5] means that the person is ill while at work (number 2), does not have
a possibility to infect anyone (number 0) and corresponds to the group number
five, which is the fifth group, starting from the beginning of the reference period.
If no group number is mentioned, the person does not belong to any dependence
group. We call them individuals. Thus, the last dependence group contains the
information about the total number of groups during the reference period. Note
that in case the person was infected by an individual, they both get the group
state which is increased by one, compared to the total number of the dependence
groups which have been formed up to that moment. However, if the person was
infected by the member of some dependence group, he automatically joins this
group by getting the same group state. Therefore, a new group can be started
only by the person who was infected independently.

We consider a department with five workers and simulate one working day in
three steps. The remaining days are included for illustrative purposes.

Step 1: Initial state of the algorithm where all 5 workers are set to be healthy
and hence not active. Obviously none of them belongs to any dependence
group, therefore the group state is absent here (see Table 2.4).

Step 2: Personal infection, where each person in the company ’has a chance’
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Person Day 1 Day2 Day 3 Day 4 Day 5 Day 6 Day 7
1 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
2 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
3 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
4 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
5 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]

Table 2.4: Step 1: Initial state of the algorithm.

to get flu individually. A possible realization of that step is presented in
Table 2.5, where two persons (number 2 and number 5) got the infection
individually during the first day. One of them (number 2) will stay two days

Person Day 1 Day2 Day 3 Day 4 Day 5 Day 6 Day 7
1 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
2 [2,1] [2,1] [3,0] [3,0] [3,0] [3,0] [4,0]
3 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
4 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
5 [2,1] [3,0] [3,0] [3,0] [4,0] [4,0] [4,0]

Table 2.5: Step 2: Personal infection.

infected at work (and is active) and will spend four days at home (where he
obviously is not active). After his illness he cannot be infected during two
months. The second one (number 5) will stay one day infected at work (and
is active), three days at home (not active) and two months at work without
a possibility to get the infection.

Step 3: Mutual infection, where each person who stays infected at work and is
active, ’has a chance’ to infect each person in the department (during the
first day) with a state [1, 0] (healthy and not active). After the person has

Person Day 1 Day2 Day 3 Day 4 Day 5 Day 6 Day 7
1 [2,1,1] [2,1,1] [2,1,1] [3,0,1] [3,0,1] [3,0,1] [4,0]
2 [2,0,1] [2,1,1] [3,0,1] [3,0,1] [3,0,1] [3,0,1] [4,0]
3 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
4 [2,1,2] [3,0,2] [3,0,2] [3,0,2] [3,0,2] [3,0,2] [4,0]
5 [2,0,2] [3,0,2] [3,0,2] [3,0,2] [4,0] [4,0] [4,0]

Table 2.6: Step 3: Mutual infection.

used all his infection chances, his activity state is changed to 0. Table 2.6
presents a possible realization of the mutual infection where person 2, who
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Person Day 1 Day2 Day 3 Day 4 Day 5 Day 6 Day 7
1 [2,0,1] [2,1,1] [2,1,1] [3,0,1] [3,0,1] [3,0,1] [4,0]
2 [2,0,1] [2,1,1] [3,0,1] [3,0,1] [3,0,1] [3,0,1] [4,0]
3 [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0]
4 [2,0,2] [3,0,2] [3,0,2] [3,0,2] [3,0,2] [3,0,2] [4,0]
5 [2,0,2] [3,0,2] [3,0,2] [3,0,2] [4,0] [4,0] [4,0]

Table 2.7: Mutual infection.

got an infection independently, has infected person 1. Both of them got
the group state 1, i.e. the first dependence group which has been formed
during the reference period. The second person (number 5) has infected
the person with number 4 and both of them got the group state 2 (the
second dependence group which was formed during the reference period).
The persons with numbers 2 and 5 have used their infection chances and
hence their activity states are changed from 1 to 0. However, the mutual
infection step is not finished yet. Two persons (numbers 4 and 1) which
got the infection from their colleagues are still active. They also have a
chance to infect each person in the department during the first day. Table
2.7 presents a possible realization of an such event. From the table it is clear
that the last person (number 3), who ’had a chance’ to get the infection, is
healthy. Numbers 4 and 1 have not infected him and became not active.

Step 3 was repeated until all active persons became not active. This is a signal
for the algorithm to go to the next day, where steps 1, 2, and 3 are repeated. It
can be noted that next day some persons already stay infected at work. Some
of them are individuals, some belong to dependence groups. Figure 2.1 presents
single realizations of the simulation process when the number of workers in the
department is 70 and the number of simulated days is 360. The green color in
the picture means that a person is healthy, the blue color represents individuals
and the red one illustrates the dependence groups. It is obvious that such a
picture is quite pessimistic. In real life the probability of such an outcome is
very small (that is why we had to perform a lot of simulations to get such a
’bad’ year). Nevertheless, this is only an illustrative example which points out
the main message that possible dependencies between the risks could lead to risk
underestimation (in November and December (the last 60 days) the red color
clearly dominates over the blue one).

Figure 2.1 does not point out the different dependence groups. All the groups
of common risk are presented by the red color. Nevertheless, we can determine and
calculate the number and sizes of such groups during the simulation process. The
number of individuals can be calculated as well. We denote by u the number of
simulated years. For each simulated year t = 1, . . . , u we get a single realization of
N , denoted by nt, a single realization of H, denoted by ht and several realizations
for the group sizes Gk, denoted by gktt, kt = 1, . . . , ht (separate realization for



2.2. SENSITIVITY ANALYSIS 35

0 50 100 150 200 250 300 350

10

20

30

40

50

60

70

Day

P
er

so
n

Figure 2.1: Example of local epidemic

each Gk). Precisely these data (nt, ht and gktt) will be analyzed in the later
sections of the present chapter.

2.2 Sensitivity analysis

As was mentioned before, this chapter deals with the motivation aspects for the
setup of Model 4. In Model 4 (see (1.9)) the distributional forms of N and H
are already settled: N ∼ P (λ(1 − ε)) and H ∼ P (λε/µG). Candidates for the
distribution of C (and D) are presented in Section 1.2 of Chapter 1. Finally,
G is assumed to be P (L) with L still undetermined. All these distributional
assumptions should be motivated, and, as far as they are not yet defined, some
proposals should be given. Here we concentrate on the distributions of N,H and
G, since these concern the new aspect of our model. All the motivations for the
distributional assumptions of the N , H and G will be given on the basis of the
statistical analysis of the simulated data nt, ht and gktt, where t runs from 1 to
u, the number of simulated years. The data set {nt, ht, gktt} is an outcome of the
simulation algorithm which was explained in detail in Section 2.1. It is obvious
that the output of the algorithm depends on the input parameters which were
also described in Section 2.1. The influence of the input parameters is very hard
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to see or predict in advance. However, this influence is important as we are going
to consider the outcome as a possible realization of reality. Should this output
turn out to be very sensitive to the input parameters, we cannot rely very well on
the results of the statistical analysis, since the input is created by ourselves and
does not represent the reality in all detail. Consequently, the algorithm should
pass several sensitivity tests, in order to illustrate that general conclusions which
are based on its output, are stable and not extremely sensitive to the input.

The main targets of interest are the distributional assumptions of the N , H
and G. Therefore, the sensitivity tests which we mentioned will be performed on
the basis of these distributions and their main characteristics. The main idea is
to check how the distributions and their main characteristics react to different
(small) changes of the input parameters. All input parameters are summarized
in Table 2.8.The number of values of the input parameters is large and it is
quite hard to analyze all possible combinations and variations. Therefore, we will
consider only several combinations which can be considered as representative for
all reasonable ones. Each of the five assumptions will be considered separately.
All the fluctuations of the first set of parameters (probabilities to get an infection)
for simplicity will be proportional. This means that all the values in Table 2.1
increase (and decrease) together, proportionally to some parameter k, which will
be a multiplier of these values. The values of k will run from 0.1 till 2 with stepsize
0.1. In case k ∈ [0.1, 1), the considered values are smaller than the originals, in
case k ∈ (1, 2] they are larger and k = 1 obviously represents the original values.
To start the simulation process we consider a large company of 15 departments
with 50 employees each (thus, 750 employees in total). The number of simulated
years u is fixed to be 1000. For each value of k we have three samples: nt, ht and
gktt, with t = 1, . . . , u and kt = 1, . . . , ht. Hence, for instance for N we have 20
samples of each 1000 simulated observations. ForH and G the situation is similar.
To compare the samples, we calculate their characteristics: standard deviation,
skewness and kurtosis. Note that the definition of kurtosis which is used in this
chapter does not subtract 3 from the result, i.e. the kurtosis here is defined as
µ4/µ

2
2, where µ4 and µ2 are the fourth and second central moments respectively.

Later in the thesis we will use the definition of kurtosis where 3 is subtracted.

Assumption Values
Probability to get an infection Table 2.1
Probability to stay sick at work Table 2.2

Nr. of days which infected person spend at work Integers, from 0 to 3
Nr. of days which infected person spend at home int(min(|N(5, 3)|, 30))

Table 2.8: Summary of the input parameters.

Figure 2.2 represents the characteristics of all the samples for different values
of k. So, for instance the kurtosis of N when k = 0.2 is based on 1000 simulated
observations of N .
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Figure 2.2: Characteristics of the simulated samples.
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First consider the characteristics of the samples of N (Figure 2.2(a)). The
obvious conclusion which can be drawn directly is that skewness and kurtosis are
not sensitive to the fluctuation of illness probabilities. Moreover, the skewness is
very close to zero while the kurtosis is very close to 3 in all the samples. Exactly
the same situation we have while considering the samples of H (see Figure 2.2(b)).
The standard deviation is increasing with k in both cases, which is natural since
larger probabilities to get flu imply larger variation of individuals, and hence
larger variation of the number of groups.

Now consider the characteristics of the samples of G (see Figure 2.2(c)). Here
the situation is slightly different. The skewness and kurtosis are not so stable
(compared to the previous samples) when k is smaller than 1. The reason for this
could be the small sample sizes. When the illness probabilities are small (k smaller
than 1), we need more simulations to ’catch’ the heavy tail of the underlying
distribution. That is why the kurtosis increases very fast at the beginning and
stabilizes when k becomes larger. The situation with the skewness is similar, but
not as extreme as in the kurtosis case.

Besides the sample characteristics, we also look more closely at the shapes
of the underlying densities, which can be estimated by histograms. Figure 2.3
presents the histograms of nt, ht and gktt, when the value of k is equal to 1.
These three histograms offer typical examples for the shapes of the underlying
densities. Consequently, histograms for the remaining values of k are not pre-
sented. These are completely similar and can be predicted easily, using the main
characteristics of the samples. The important conclusion here is that the densities
do not dramatically change in shape. Hence, we can conclude that in this respect
there is little sensitivity to fluctuation of the illness probabilities.

The fluctuations of the second set of parameters (Table 2.2) are impossible
to analyze using proportionality since the sum of all the probabilities has to be
equal to 1. Therefore, we consider several cases with different representative
probabilities. Six different situations are presented in Table 2.9. For each situation

Nr. of days 0 1 2 3
Original prob. 0.2 0.5 0.25 0.05
Situation 1 0.6 0.02 0.1 0.1
Situation 2 0.1 0.3 0.4 0.2
Situation 3 0.1 0.2 0.3 0.4
Situation 4 0.05 0.9 0.03 0.02
Situation 5 0.05 0.03 0.9 0.02
Situation 6 0.9 0.05 0.03 0.02

Table 2.9: Different cases for illness at work probabilities.

we have performed the same analysis as was done in the proportional variation
case. However, we do not present all the results here since they are very close to
the ones we got while analyzing the fluctuations of the illness probabilities. The
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Figure 2.3: Histograms of the simulated samples.
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Situation Description
1 Proportional variation of illness probabilities when k = 0.1
2 Proportional variation of illness probabilities when k = 1
3 Proportional variation of illness probabilities when k = 2

Table 2.10: Representative situations.

same situation holds with the remaining input parameters, which are the number
of days an ill person spends at work and at home. Adding or removing a couple
of days does not change the general pattern. The pictures of the characteristics
and the histograms stay very close to Figures 2.2 and 2.3. Therefore, the main
conclusions which were based on these figures, can be extended for the remaining
parameters as well.

Summarizing all the results, we conclude that the algorithm is sufficiently
stable for our purposes. The main sample characteristics, together with the shapes
of the histograms, are not extremely sensitive to the input. This means that
general conclusions about the distributional families of N , H and G (which will
be presented in the next section) will remain similar and hence precise knowledge
– which we clearly do not have – about the values of the input parameters in
reality fortunately is not needed.

2.3 Fitting simulated data

In this section we will try to fit the data which were simulated by the algorithm.
As was already mentioned, we consider a large company of 15 departments with
50 employees each (thus, 750 employees in total) and the number of years u
(which can be considered as the number of simulations) is fixed to be 1000. In
the previous section the algorithm was simulated several times, using different
sets of input parameters. For simplicity (and also to save time) in this section
the same data sets will be used which were utilized in the sensitivity analysis.
For each data set considered we will try to find a distribution which fits the data.
We will also utilize the results of the previous section, where the data samples
were analyzed nonparametrically. This will help to start the fitting procedure,
to determine reasonable candidates among the huge number of available distri-
butions. For instance, we already saw that the distributional shapes of N and H
are completely different from the shape of the distribution of G (see Figure 2.3).
This fact certainly gives us a hint that these random variables belong to different
distributional families.

Since the output of the algorithm is not extremely sensitive to the input, there
is no need to include all the data sets (which were considered in Section 2.2) to the
fitting procedure. Three situations are chosen to be representative of all possible
combinations (see Table 2.10).
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2.3.1 Fitting N and H

We will start with fitting the simulated data samples nt and ht, where t = 1, . . . , u.
In the previous section several characteristics of these samples were already ob-
tained. Figure 2.2 illustrates that the sample skewness is very close to zero which
means that the shape of the distribution is likely to be quite symmetric. The
kurtosis, which represents the thickness of the tail of the distribution, is close to
3. These two characteristics give us an idea about reasonable candidates for the
fitting procedure. The first candidate is the normal distribution, which has ex-
actly the same characteristics. The second candidate is the Poisson distribution.
Skewness and kurtosis of the Poisson distribution are not 0 and 3, but they are
very close to these values when the parameter of the distribution is large. Three
more candidates considered are the gamma, lognormal and Inverse Gaussian (IG)
distributions. According to the information we have so far, these three distribu-
tions are not the best candidates. They are not symmetric, which is not in line
with the representative histograms 2.3(a) and 2.3(b). However, we include these
three distributions for illustration.

After choosing the candidates, we apply the maximum likelihood method for
the estimation of the parameters. Using these estimated values, the distributions
are fitted to the data. To chose the best distribution out of the five considered,
we compare them with the empirical distributions of the underlying data sets nt
and ht. In each value of the empirical distribution xi, we calculate a relative error

F (xi)− Fe(xi)
F (xi)

,

where Fe denotes the empirical distribution and F the candidate distribution. The
number of values which are used is not defined in advance since it depends on
the simulated data. Basically, the xi’s are all the different values in the simulated
sample, starting from the minimum value and finishing with the maximum one.
Figure 2.4 presents the relative errors for the three nt samples, which are described
in Table 2.10. From a first glance it is seen that the relative errors are rather
small, at most 0.07. Moreover, it is clear that the Poisson distribution is closer
to the empirical distribution almost everywhere. The normal distribution, which
was the first candidate due to its skewness and kurtosis characteristics, shows a
relatively bad fit in the middle, where the values are close to the mean. Note
that the high and low values are fitted well by the normal distribution. As was
expected, the gamma, lognormal and IG distributions show a relatively poor fit
on the whole range of the values considered. As a result, we conclude that the
Poisson distribution fits the data very well. The relative errors are very small on
the whole range of the values considered.

The same procedure, with the same distributional candidates, was performed
for the ht samples. We do not present all the results since they are very close
to the results of the analysis of the nt samples (see Figure 2.4). This is not a
surprise since Figure 2.2(b) is very similar to Figure 2.2(a) which is an indication
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Figure 2.4: Results of nt data fitting.
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(but certainly not a proof) that these samples come from the same (or a similar)
distributional family. The extended analysis shows that this prediction is not
far from reality. Therefore, the conclusion about the distribution which fits the
data ht best is the same as the conclusion in the nt fitting case. The Poisson
distribution shows the best (and very good) results in both cases.

2.3.2 Fitting G

Now consider the last set of samples, which are those of the group sizes gktt. By
looking to Figure 2.2(c) we see that the main characteristics of the gktt’s differ
from the sample characteristics of nt and ht. The skewness is not 0, but varying
between 3 and 4 and the value of the kurtosis is even higher, reaching 14 when
the illness probabilities are high. This suggests that the underlying distribution
is not symmetric and has a heavy tail. Additional proof for such a conclusion
we get by considering Figure 2.3(c), where the histogram clearly illustrates the
asymmetry and heavytailedness. Candidates considered which satisfy the above
mentioned requirements are the lognormal, IG, negative binomial and gamma.
Of course, in the literature many more distributions with such characteristics
exist, but the present ones are the most common. One more distribution which
we add for illustrative purposes is the Poisson. Following the same strategy,
results of the fitting procedure are presented as a set of relative errors. Like in
the previous case, the empirical distribution is compared with all the candidates.
Figure 2.5 presents the results when situation 1 (see Table 2.10) is assumed.
We do not present the results for the remaining situations since they are very
similar to the one considered. From the figure it is clear that the situation is not
so straightforward as the one which is presented by Figure 2.4. Among all the
candidates we do not have a single leader now. All the candidates (except the
Poisson distribution) are very close to each other and it is very hard to distinguish
the best one. Additionally it can be noticed that the relative errors are much
larger, compared to the nt fitting case.

Since all candidates are close to each other and the relative errors much larger
(compared to the nt fitting case), the question arises whether they are all rea-
sonable ones. A precise answer would require some criterion of accuracy to be
introduced. However, since this is not the main goal of the thesis, we shall not
pursue this and simply conclude on qualitative grounds that the accuracy achieved
is sufficient for our purposes.

To choose the distribution from the four presented ones, we look more closely
at Model 4 (see (1.9)). The random variables Gk, which represent the group sizes,
appear in the upper summation index of the second part of the model. It was
already mentioned that the general form of G is assumed to be P (L), where P (·)
denotes the Poisson distribution and L is a random variable (not yet defined).
Therefore, the distribution of G is basically defined by the distribution of L. It is
well known that in case L follows gamma distribution, the resulting distribution of
G will be negative binomial, which is present among the reasonable candidates for
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the distribution of G. In this respect, the negative binomial distribution offers an
advantage over the remaining candidates. Nevertheless, this does not mean that
the negative binomial will be the only distribution considered. More candidates
for the distribution of L will be presented in the chapters that follow.

2.4 Conclusions

The main goal of the chapter was to introduce a motivation for the distributional
assumptions which are used in Model 4. The main targets of the consideration
were the distributions of N , H and G (all the Gk’s are assumed to be identi-
cally distributed as G). Representative samples of these random variables were
obtained by simulating the algorithm, which was explained in Section 2.1. The
obtained samples were analyzed and possible candidates were suggested for each
of the random variables considered. All the candidates were fitted to the data,
using the maximum likelihood method for parameter estimation. The Poisson dis-
tribution showed a very good fit while the samples from N and H were considered.
However, the analysis of the samples from G did not point out a leader among
the candidates considered. Nevertheless, several important conclusions about the
distribution of G were obtained while analyzing the data. These are the positive



2.4. CONCLUSIONS 45

skewness (between 3 and 4) and large kurtosis (about 14). The negative binomial
distribution was suggested for the distributional assumption of G in view of some
of its properties which significantly simplify application of the model.





Chapter 3

The Model

In the Introduction we presented the hierarchical development and a brief de-
scription of the models, starting from the independence Model 1 (see (1.4)) and
ending with the dependence Model 4 (see (1.9)). All the models, together with
their basic assumptions, are summarized in Table 3.1. This chapter deals with

Number Model Assumptions

1 S =
∑N
i=1 Ci N ∼ P (λ)

2 S =
∑N
i=1 Ci +

∑H
k=1

∑g
j=1Djk N ∼ P (λ(1− ε)), H ∼ P (ελg )

3 S =
∑N
i=1 Ci +

∑H
k=1

∑Gk
j=1Djk N ∼ P (λ(1− ε)), H ∼ P (ε λµG ),

Gk ∼ P (µG) for all k

4 S =
∑N
i=1 Ci +

∑H
k=1

∑Gk
j=1Djk N ∼ P (λ(1− ε)), H ∼ P (ε λµG ),

Gk ∼ P (Lk) for all k, µL = µG

Table 3.1: Hierarchical development of the models.

Model 4, the most general version of the dependence model we have considered
in the present research . In Chapter 1 the main assumptions (which were further
motivated in Chapter 2) and the structure of the model were discussed. Here
we will describe Model 4 in more detail, present its main characteristics, discuss
the impact of the model parameters and describe the region of interest for the
values of the parameters involved. Concerning Model 4, the structure of which
is presented in Table 3.1, we remind that all Lk are iid and consequently we can

47



48 CHAPTER 3. THE MODEL

use L as a representative for all the Lk’s. The same situation holds with G for
Gk, C for Ci and Djk (by default (in case nothing is mentioned) all the Djk’s for
simplicity are assumed to have the same distribution as the Ci’s).

The difference between Model 4 and Models 2 and 3 is the assumption about
the group size G. In Model 3 G was assumed to follow a simple Poisson distribu-
tion, in Model 2 the group sizes g were assumed to be fixed, while in Model 4 G
has a mixture distribution P (L), where P (·) stands for the Poisson distribution
and L is stochastic.

The main reason for such a generalization is hidden in the underlying struc-
ture of the data which we need to model. We consider a quite high aggregation
level, which definitely makes the underlying data more heterogeneous. An ex-
ample of such heterogeneity can be the different departments (or even different
companies) which form the portfolio considered and divide it into a number of
(hopefully homogeneous) parts. Each part has its own specific features (like dif-
ferent expectations of the group sizes), which could have a strong impact on the
model assumptions. This overdispersion suggests not to model all the group sizes
of the underlying portfolio by one single Poisson distribution. Following standard
statistical methodology the overdispersion is modeled by the mixture distribution
P (L). A demonstration of that fact we got by simulating the flu epidemic inside
a company in Chapter 2. The simulations results showed that the number of
individuals N (as well as the number of groups H) can be modeled by the simple
Poisson distribution, while the group sizes definitely needed a more heavy tailed
distribution.

Using these arguments we came up with the general form of Model 4, which
uses more advanced group size modeling. The group sizes are assumed to follow
the Poisson distribution with a random parameter, which represents the random
group size expectation (each homogeneous part has its own group size expecta-
tion). This kind of modeling allows us to overcome the heterogeneity problem.

3.1 Main characteristics of the model

Considering Model 4 we see that the form of the distribution of S will be very
complicated, which makes it very hard to analyze its behavior. An even more
complicated task would be to analyze the behavior of the distribution of certain
functions of S, which is one of the goals of the thesis. This fact was already
mentioned in the Introduction, where it was suggested to use an approximation
instead of the real distribution.

The basic features which characterize the distribution of S are its mean µS ,
its standard deviation σS and its standardized cumulants (the third and fourth
are known as skewness and kurtosis). Having such characteristics of the real
distribution of S, we can locally approximate its behavior by matching these
with the standardized cumulants of some other distribution of a more simple
form. The approximation aspect will be covered in detail in Chapters 4 and 5.
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In the present section we derive the analytical expressions for the mean µS , the
standard deviation σS and the third and fourth standardized cumulants of S,
which will be used later in the approximation formulas. Clearly, the advantage
of such explicit expressions will be that the influence of the various components
in the model on the moments and cumulants in question is made transparent.
First we introduce the notation required. For a single rv X use µ for its mean
and σ2 for its variance. Moreover, for general (central) moments use νj = E[Xj ]
and µj = E[(X − µ)j ], j = 1, 2, . . . (hence in particular ν1 = µ and µ2 = σ2).
In addition, let γ = σ/µ denote the coefficient of variation (cv). If more than
one random variable is involved, the respective indices are added, e.g. µX , ν3X ,
etc. Next, the moment generating function E[etX ] will be denoted by M(t); as is
well-known, νj = M (j)(0), j = 1, 2, . . . Similarly, let K?(t) = log M(t) denote the
cumulant generating function, then the jth cumulant κ?j = K?(j)(0). In particular,
we have that κ?1 = µ, κ?2 = σ2, κ?3 = µ3, κ?4 = µ4 − 3σ4. Moreover, let K be the
corresponding function for the standardized rv (X − µ)/σ, then the standardized
cumulants κj satisfy κ1 = 0, κ2 = 1, κ3 = µ3/σ

3, κ4 = µ4/σ
4 − 3. Using these

notations we can write that

µS = κ?1S , σ2
S = κ?2S , κ3S =

κ?3S
σ3
S

, κ4S =
κ?4S
σ4
S

. (3.1)

Therefore, it is very convenient to calculate the mean, variance, skewness and
kurtosis of S by using the cumulants of S, which, in their turn, can be expressed as
derivatives of the cumulant generating function of S at the point 0. The following
lemmas present the expressions for the mean µS , the standard deviation σS and
the third and fourth cumulants of S under the different model assumptions.

Lemma 3.1. Suppose that Model 4 holds and G,C and D have arbitrary distri-
butions. Then µS = (1− ε)λµC + ελµD, and

σ2
S = (1− ε)λν2C + (ελ/µG){ν2Gµ

2
D + µGσ

2
D},

κ?3S = (1− ε)λν3C + (ελ/µG){ν3Gµ
3
D + 3ν2GµDσ

2
D + µGκ

?
3D}, (3.2)

κ?4S = (1−ε)λν4C+(ελ/µG){ν4Gµ
4
D+6ν3Gµ

2
Dσ

2
D+ν2G(4µDκ?3D+3σ4

D)+µGκ?4D}.

Proof. Using the definition of Model 4 and the properties of the cumulant gen-
erating function we directly have

K?
S = K?

N ◦K?
C +K?

H ◦K?
G ◦K?

D. (3.3)

As a random variable X which is Poisson(θ) has K?
X(t) = θ(et − 1), it follows

that (noting that N and H are Poisson)

K?
S(t) = (1− ε)λ{MC(t)− 1}+ (ελ/µG){MG(K?

D(t))− 1}. (3.4)

The result in (3.2) readily follows from κ?jS = K
?(j)
S (0). �
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The expressions in (3.2) and (3.4) are already reasonably tractable. By way of
illustration, we shall consider some examples. If G is fixed, i.e. G = µG (cf.
Reijnen et al. [2005]), MG(K?

D(t)) in (3.4) boils down to {MD(t)}µG and the
νjG in (3.2) to µjG. When G is binomial(g, r) instead (cf. Albers [1999]), we get
MG(K?

D(t)) = {1+r(MD(t)−1)}µG/r in (3.4). Supposing that µG is substantially
larger than 1 - which clearly is the case of interest - the νjG in (3.2) are dominated
by µjG (e.g. ν2G = µ2

G +µG(1− r)). Obviously, for r = 1, we are back in the fixed
case, while for r → 0 (and g = µG/r →∞) we get the Poisson case. In case G is
Poisson(µG), we have MG(K?

D(t)) = exp{µG(MD(t)−1)}, while the νjG in (3.2)
are still mainly characterized by µjG (e.g. here ν2G = µ2

G + µG).
As these examples demonstrate, for specific choices of G, we get reasonably ex-
plicit results by using (3.2) and (3.4). It just remains to make a choice as well
for C and D in that case. As a next step we introduce the overdispersion aspect
which was discussed at the beginning of this chapter (see also Table 3.1).

Lemma 3.2. Suppose that Model 4 holds, C,D and L have arbitrary distributions
and the group sizes are distributed as G ∼ Poisson(L). Then µS = (1− ε)λµC +
ελµD, and

σ2
S = (1− ε)λν2C + (ελ/µG){ν2Lµ

2
D + µGν2D},

κ?3S = (1− ε)λν3C + (ελ/µG){ν3Lµ
3
D + 3ν2LµDν2D + µGν3D}, (3.5)

κ?4S = (1−ε)λν4C+(ελ/µG){ν4Lµ
4
D+6ν3Lµ

2
Dν2D+ν2L(4µDν3D+3ν2

2D)+µGν4D}.
Proof. Using the fact that G|L = l is Poisson, we obtain that E[etG|L = l] =
exp(l(et−1)). From this result it directly follows that E[etG] = E[exp(L(et−1))] =
ML(et − 1). By using these arguments we arrive at the identity

K?
G(t) = K?

L(et − 1). (3.6)

Using this result and the fact that K?(t) = logM(t), the general expression of
the cumulant generating function of S takes the form

K?
S(t) = λ(1− ε)(MC(t)− 1) + ε

λ

µG
(ML(eK

?
D(t) − 1)− 1)

= λ(1− ε)(MC(t)− 1) + ε
λ

µG
(ML(MD(t)− 1)− 1)

= λ(1− ε)QC(t) + ε
λ

µG
(QL ◦QD(t)), (3.7)

where Q(t) = M(t)− 1.
To get the final result we have to differentiate (3.7). The general form of this

derivative can be written as

K
?(j)
S (t) = λ(1− ε)Q(j)

C (t) + ε
λ

µG
((QL ◦QD)(j)(t))

= λQ
(j)
C (t)

(
1 + ε

[
(QL ◦QD)(j)(t)

µGQ
(j)
C (t)

− 1
])
.
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To obtain (3.5) we evaluate this derivative at 0 for j = 1, 2, 3, 4. �

A final step in reduction of complexity is obtained by letting C , D (the
notation ’,’ means equality in distribution) as was announced at the beginning
of the chapter.

Lemma 3.3. If in addition to the assumptions of Lemma 3.2, we let C , D, the
following general expression holds

κ?jS = λQ
(j)
C (0)

(
1 + ε

[
(QL ◦QC)(j)(0)

µGQ
(j)
C (0)

− 1
])
. (3.8)

In particular, (3.5) can be replaced by µS = λµC and

σ2
S = λν2C{1 + εν2Lµ

2
C/(µGν2C)},

κ?3S = λν3C{1 + ε(ν3Lµ
3
C + 3ν2LµCν2C)/(µGν3C)}, (3.9)

κ?4S = λν4C{1 + ε(ν4Lµ
4
C + 6ν3Lµ

2
Cν2C + ν2L[4µCν3C + 3ν2

2C ])/(µGν4C)}.

Proof. The proof follows directly from Lemma 3.2, applying C , D. �

3.2 Suggested distributional assumptions
Most of the distributional assumptions of Model 4 are already fixed. The number
of individual claims N and the number of groups H have a Poisson distribution,
the probability mass function of which is denoted by

fP (x) =
αxe−α

x!
, (3.10)

where α is a fixed parameter, which in our case is equal to λ(1 − ε) for N and
ελ/µG for H. For the motivation of this choice we refer to Chapters 1 and 2.
The distribution of the group sizes G is also assumed to have a Poisson basis.
Nevertheless, in view of the discussions in Sections 1.3, 2.3 and at the beginning
of this chapter, we introduce the overdispersion aspect, which is reflected by the
random parameter L of the underlying Poisson distribution. Hence, the only
assumptions which still have to be added are those about the distribution of the
claim size C and the distribution of L.

Several distributions which are widely used in the insurance practice are sug-
gested as possible candidates for the distributional assumption of C. These dis-
tributions together with their basic characteristics (mean µ, variance σ2 = µ2,
skewness µ3/µ

3/2
2 and kurtosis µ4/µ

2
2 − 3, where µj , j = 2, . . . , 4 are the central

moments) are presented in Table 3.2 below (IG stands for Inverse Gaussian).
These three distributions will be used as proposed assumptions for C. The choice
for distributional assumptions about L will be handled with more care since the
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modeling approach used in the present research is quite new and hardly covered
in the literature. A detailed analysis of the distributional assumptions of L is
presented in Section 3.4, where reasonable candidates are chosen from Table 3.2.
Note that parameters of these distributions will have indexes C or L (like αC will
be the parameter for C and αL will be the parameter for L).

3.3 Model parameters
In this section we are going to discuss the set of parameters of Model 4 which
later will be used as input. It is important to note the difference between the
model parameters and the parameters of the underlying distributions. The dis-
tributional parameters serve as mechanical tools to steer the model and they
rarely have any economical interpretation. For instance, if the claim size C ∼
Lognormal(αC , βC), the parameter αC does not have an economical background.
It is not the expected value or the standard deviation of the claim size, it is sim-
ply the parameter of the distribution. These parameters can be considered as an
intermediate step between the input of the model and the model application.

In contrast with the distributional parameters, the model parameters (input)
should represent the insurance portfolio characteristics and have to be invariant
w.r.t. the distributional assumptions. These features are convenient for the prac-
tical application of the model. Therefore, we will try to organize the input from
the distributional characteristics (like mean or standard deviation), and not from
the distributional parameters. An example of a model parameter can be µC ,
which is the expected claim amount, having a clear economical interpretation.

Unlike the distributional parameters which are fixed by the definition of the
distribution, the model (input) parameters have to be chosen by the model users.
They should have all the characteristics described above, be convenient in use and
define the model completely. As a basis we use the set of model parameters which
was presented in Reijnen [2003] and later in Reijnen et al. [2005] (for details see
the Introduction). Some of these parameters will be used directly in the form in
which they appeared in the papers, while others will be modified w.r.t. specific
features of Model 4.

As was already mentioned, approximations will often be used in our calcula-
tions. The main characteristics of the approximations are the mean, variance and
standardized cumulants of S, which were derived in Section3.1. Naturally, the
mean, variance and standardized cumulants are functions of the model parame-
ters. Therefore, the impact of the model parameters on the approximations and
hence on the final result can be predicted through the formulas (3.1)-(3.9). The
following sections present brief discussions about a reasonable choice of the input
parameters and their impact on the outcome.
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3.3.1 Parameters µC, ε and µG

Parameters which remain the same as in the work of Albers [1999], Reijnen [2003]
and Reijnen et al. [2005] are µC , ε and µG. These parameters clearly satisfy
all the conditions described above and can directly play the role of the input
parameters of Model 4. Parameter µC is the first parameter of the claim size
distribution which defines the claim size expectation. Note that µC is a dummy
parameter: the problem remains invariant under scale transforms. Therefore in
illustrative examples of the thesis the input parameter µC will be set at some
fixed representative value.

Parameter ε is one of the "dependence" parameters, which defines the expected
percentage (in decimals) of "special claims" inside the portfolio. It is arises in the
model in a linear way and that is also the way it comes out in the formulas of the
cumulants (3.2)-(3.9) (of course, in the formulas of the standardized cumulants
it appears in a slightly more complicated way). Its main role is to make very
explicit that out of the average claim amount µS indeed only a fraction ε has to
be attributed to dependent aspects of the model.

Parameter µG stands for the ’lumpiness’ of the dependence part (which is
defined by ε) which formally is the expected group size. It is clear that the larger
µG, the bigger the problems caused by the dependence.

3.3.2 Parameter λ

In the present thesis parameter λ represents the total expected number of claims
(simple and special). For the first time it appeared in Albers et al. [2008], replacing
two parameters, called n and p in Section 1.3, which represent the size of the
insurance portfolio and the probability of the occurrence of a claim, respectively.
In our case we obviously have λ = np, which is more intuitive and convenient.

Speaking about the influence of λ, it can be concluded that as λ becomes
larger, all approximations become more accurate. This fact can be seen from the
formulas of the standardized cumulants κjS = κ?jS/σ

j
S , j = 3, 4 (see (3.2)-(3.9)).

It is clear that these κjS are proportional to λ1−j/2, and thus become small as λ
increase, and it is well known that distributions with small skewness and kurtosis
can be more accurately approximated by moments-based approximations. The
increase of λ basically means the increase of the size of the underlying portfolio n,
since p seems to be more or less given. From this we conclude that it will really
help (from the approximation point of view) to consider a higher aggregation
level.

3.3.3 Parameters γC and γG

In order to define the distribution of the claim size we need one more parameter.
Having expectation µC as a first parameter, the standard deviation σC was used
in Albers [1999] as a second one. Albers [1999] used the normal distribution
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for modeling the claim size. In that case µC and σC is a natural and convenient
choice. In the present research the claim sizes are assumed to have a more realistic
distribution and the choice of Albers [1999] loses its advantages. In our research
we use the coefficient of variation γC instead. The main advantage of using

γC =
σC
µC

is that this quantity is scale invariant, which, among others, allows us to avoid
using large numbers. As soon as the distribution of C no longer is assumed to be
normal, we often have to deal with higher moments of the underlying distribution.
In that case one more advantage of using γC is the relatively simple expressions
for the standardized cumulants (see Lemma 3.4). The following lemma presents
some results which can be useful while applying (3.2)-(3.9).

Lemma 3.4. For the evaluation of the νjL and νjC from (3.2)-(3.9) we have in
the

(i) general case:
ν2

µ2
= 1 + γ2,

ν3

µ3
= 1 + 3γ2 + γ3κ3,

ν4

µ4
= 1 + 6γ2 + 4γ3κ3 + (κ4 + 3)γ4.

(ii) Gamma case: Gamma(α, α/µ) (see Table 3.2)

γ = α−1/2, κ3 = 2γ, κ4 = 6γ2,
νj
µj

=
j−1∏
i=1

(
1 +

i

α

)
.

(iii) Inverse-Gaussian case: IG(α, β)

γ =

√
β

α
, κ3 = 3γ, κ4 = 15γ2,

ν3

µ3
= 1 + 3γ2 + 3γ4,

ν4

µ4
= 1 + 6γ2 + 15γ4 + 15γ6.

(iv) lognormal case: LN(α, β), writing δ = exp(β2) = µ2 exp(−2α)

γ = (δ − 1)1/2, κ3 = (δ − 1)1/2(δ + 2),

κ4 = δ4 + 2δ3 + 3δ2 − 6,
νk
µk

= δk(k−1)/2, k = 1, 2, . . .

Proof. The general case (i) follows from straightforward evaluation. In the
Gamma(α, β) case (where β can be written as α/µ) we have µ = α/β, σ2 = α/β2

and γ = α−1/2 (see also Table 3.2). The cumulants κj follow likewise, while
for the νj we have νj =

∏j−1
i=0{(α + i)/β} = νj1

∏j−1
i=1 (1 + i/α) and (ii) follows.

The IG(α, β)-case is dealt with in a similar manner and produces (iii). For the
LN(α, β)-case, we note that νk = exp(kα + k2β2/2) and hence µ = ν1 = δ1/2eα

and νk/µk = δk(k−1)/2, as stated in (iv). Hence γ = (ν2/µ
2 − 1)1/2 = (δ − 1)1/2.

The results for κj are obtained in a similar way. �
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Parameter γG is chosen as a second parameter of the distribution of the group
size (the first parameter was µG, the expected group size). Its basic advantages
can be compared to the advantages of the parameter γC : scale invariance and
simplicity. Given the value of µG, the random variable L in addition describes the
so-called overdispersion effect, which further increases the dependence effect. This
is expressed in the replacement of µj−1

G by the larger quantity νjL/µG (see Lemma
3.4). For instance in the Gamma case, we obtain that νjL/µG = µj−1

G

∏j−1
i=1 (1 +

i/α), which indeed indicates a significant further increase for α small.

Parameter Description
µC Expected claim size
γC Coefficient of variation of the claim size
λ Total expected number of claims
ε Percentage of the special claims
µG Expected group size
γG Coefficient of variation of the group size

Table 3.3: Input parameters of Model 4

Table 3.3 summarizes all parameters of the model, which will be used as input.

3.4 Values of the model parameters
In this section we are going to define the region of interest for the parameters of
Model 4 and the range of their values which will be used later as representative in
the testing procedures and in a number of numerical examples. As starting point
will be used the set of parameters values of the models which were presented in
Reijnen [2003], Albers [1999] and Reijnen et al. [2005]. Some of these values will
be used directly in the form in which they appeared in the papers, while others
will be modified w.r.t. specific features of Model 4. In the previous section we
presented the definition and discussion of the input parameters. All of them are
summarized in Table 3.3. The region of interest and the representative values will
be defined for each of these parameters.

We will start with the choice of the portfolio size which will lead to the choice of
the values of λ. In Albers [1999] them and q were taken in such a way that λ = mq
gives values between 12 and 30. Already for such small values, the approximations
worked nicely. But of course, the author considered the extremely well-behaved
case of normally distributed claim amounts. In Reijnen [2003] more realistic claim
size distributions were utilized and the value λ = 80 (i.e. q = 0.008,m = 10000)
was used as the total expected number of claims. Here we consider an even more
complicated case with a mixture distribution for the random group sizes G. In
that case, by fixing λ = 80 and ε = 0.03, the expected number of special claims
is only 2.4. Hoverer, if we want to analyze large group sizes like µG = 20 (maybe
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even larger), the expected number of such groups is only 0.12. Our assumption for
the number of groups is Poisson. So the occurrence probabilities for the number
of groups of size 20 are (see (3.10) with λ = 0.12)

fP (1) = 0.1,

fP (5) = 1.8× 10−7.

This means that to see a case with 5 large groups we have to perform at least 107

simulations, which seems to be too much. Consequently, in the present study we
will use larger values of λ : λ ≥ 400.

One more reason to increase the value of λ is the introduction of the random
expectation of the group size. The group sizes of Model 4 are assumed to have a
mixture distribution which can dramatically increase the kurtosis of S, which can
be unrealistic from the practical point of view and certainly will complicate the
analysis of the dependence effect (relative increase of the value of the considered
risk measure after introducing the dependency structure). When λ is increasing,
the kurtosis of S decreases and the approximations work well. Therefore, our
proposal for the region of interest for λ is 400 as a minimum value. The maximum
is not defined since the larger λ, the better the accuracy of the approximations.
Therefore, λ = 400 is chosen as a representative value for the testing procedures.

Speaking about testing the accuracy of the approximations, the effect of ε is
expected to be approximately linear both in the true value (denoted by T ) and
the the approximated value (denoted by X) and hence the relative error (which
will be used for the accuracy judgement) |X−T |/T does not depend (heavily) on
ε, implying that if we compare several values of ε, the results about the accuracy
will be similar. Therefore, the region of interest for ε is chosen to be ε ≤ 0.05
with a representative value ε = 0.03.

The region of interest for the parameters of the claim size distribution is mostly
determined by γC . Parameter µC defines only the calculation scale of the quan-
tities we are interested in. Therefore, we fix µC at one value 100000, like it was
done in Reijnen [2003], Reijnen et al. [2005] and Albers [1999]. Given µC it re-
mains to indicate ranges for γC . We introduce the region of interest for γC as
0.05 ≤ γC ≤ 2.5 with representative values 0.4 and 1.6. Such a choice is based
on the work of Reijnen [2003] and Reijnen et al. [2005], where the skewness of C
played an important role in the rule of thumb, the rule which provides an accurate
approximation for the situation considered there.

The final parameters for which the region of interest has to be defined are µG
and γG, the parameters of the group size. Parameter µG already appeared in the
papers of Albers [1999] and Reijnen et al. [2005]. In the present thesis the region
of interest for it remains the same, namely 5 ≤ µG ≤ 20 with representative values
5, 10 and 20.

Remark 3.1. The range of interest for the parameter µG varies between 5 and
20. Hence, G will as a rule be at least equal to 2. However, a value of G equal to 1
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is possible. In that case we do not really have a group and it will not be recognized
as such. Nevertheless, for most of the theory developed in the present thesis this
will cause no problem: the results continue to hold for general G. In view of
that we will often (when it is convenient) switch between two parametrizations:
(µG, γG) and (µL, γL). By definition of G the relation between the two forms of
parametrization is simply given by

µG = E[E[G|L]] = µL,

γ2
G = V ar

[
G

µL

]
= µ−2

L (V ar[E[G|L]] + E[V ar[G|L]]) = γ2
L + µ−1

L .

On the other hand, in practice a value of G equal to 1 will occur only rarely and
we may ignore it without making large mistakes. �

The parameter γG is new. It did not appear in the earlier papers. Therefore, to
define reasonable values of interest we perform a somewhat deeper analysis. The
decision will be based on a number of numerical examples of the distribution of L
and its main characteristics. The distributions which are suggested as candidates
for a reasonable distribution of L are summarized in Table 3.2. Several situations
with different values of γG will be checked for each of the distributions considered.
Based on that analysis, reasonable situations will be included in the region of
interest for the parameter γG. Note that when it is convenient, the results will be
presented through the parameter γL, which is closely related to γG (see Remark
3.1).

3.4.1 Situations when L ∼ Gamma(αL, βL)

The first candidate for the distribution of L is the Gamma distribution with
parameters

αL = γ−2
L = (γ2

G − µ−1
G )−1,

βL = (γ2
LµG)−1 = (γ2

GµG − 1)−1.

Figures 3.2 and 3.1 illustrate densities for the different situations which are sum-
marized in Table 3.4.

It can be seen that the situations where µG is small (not large enough) and
γL is large (situations 2,3,6) are not very useful for our purposes. They are too
extreme in the sense that the probabilities for small group sizes (< 1) are quite
high. We need discrete numbers, therefore as a result we get 0 or 1 too often.
This can lead to the domination of the groups with sizes 0 and 1 which is not
realistic from practical point of view, see also Remark 3.1. The density for large
group sizes is also not very realistic in these situations. When we speak about
groups which are larger than 5 we get almost uniformly distributed probabilities.
This produces groups like 8 and 100 with almost the same probability. Maybe
such situations can find an application, but these are really extreme cases.
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Situation µG σL γL γG αL βL Skewness Kurtosis
1 5 5 1 1.09 1 0.2 2 6
2 5 10 2 2.04 0.25 0.05 4 24
3 5 20 4 4.02 0.0625 0.0125 8 96
4 10 5 0.5 0.59 4 0.4 1 1.5
5 10 10 1 1.04 1 0.1 2 6
6 10 20 2 2.02 0.25 0.025 4 24
7 20 5 0.25 0.34 16 0.8 0.5 0.375
8 20 10 0.5 0.55 4 0.2 1 1.5
9 20 20 1 1.02 1 0.05 2 6

Table 3.4: Different situations for the Gamma distribution

(a) Situation 7 (b) Situation 8

(c) Situation 9

Figure 3.1: Gamma densities for the different situations (7-9)

To get nicer pictures it is necessary to increase the group size. Situations like
4,7 or 8 are nicer in the sense that the tail is not so extremely heavy and the very
small values do not have so much density. The third type of situation is when
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the tail is not so extremely heavy, but the very small values do have substantial
density. These are situations like 1,5,9.

(a) Situation 1 (b) Situation 2

(c) Situation 3 (d) Situation 4

(e) Situation 5 (f) Situation 6

Figure 3.2: Gamma densities for the different situations (1-6)

It is possible to divide the situations considered here into three groups: when
γL < 1, γL > 1 and γL = 1. Situations considered here with γL ≤ 1 are acceptable
when L ∼ Gamma but the situations with γL > 1 have to be strictly motivated.
We can consider γL = 1.5 as a boundary case, but γL = 4 is certainly out of the
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question. In general γL ≤ 1.5 would be the proposed region of interest for γL
when L ∼ Gamma with representative values 0.75 and 1.5.

3.4.2 Situations when L ∼ IG(αL, βL)

The next distribution we are going to investigate is the Inverse Gaussian with

αL = µG

and

βL = γ−2
L µG = (γ2

G − µ−1
G )µG.

Here, like in the L ∼ Gamma case we consider several situations with different
µG and γL values. Parameters values for all the situations, together with the
densities, are found in Table 3.5 and Figures 3.4 and 3.3.

(a) Situation 7 (b) Situation 8

(c) Situation 9

Figure 3.3: Inverse Gaussian densities for the different situations (7-9)
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(a) Situation 1 (b) Situation 2

(c) Situation 3 (d) Situation 4

(e) Situation 5 (f) Situation 6

Figure 3.4: Inverse Gaussian densities for the different situations (1-6)

From the figures we conclude that the Inverse Gaussian distribution is more
useful for our purposes. When we speak about the distribution for the group size
we need something more skewed to the right and more (but not extremely) heavy
tailed. We do not need too much mass at the beginning of the density. In the
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L ∼ Gamma case the skewness is not large enough and we get situations when
too much density is concentrated at the very beginning, where values are smaller
than 1.

Situation µG σL γL γG αL βL Skewness Kurtosis
1 5 5 1 1.09 5 5 3 15
2 5 10 2 2.04 5 1.25 6 60
3 5 20 4 4.02 5 0.3125 12 240
4 10 5 0.5 0.59 10 40 1.5 3.75
5 10 10 1 1.04 10 10 3 15
6 10 20 2 2.02 10 2.5 6 60
7 20 5 0.25 0.34 20 320 0.75 0.9375
8 20 10 0.5 0.55 20 80 1.5 3.75
9 20 20 1 1.02 20 20 3 15

Table 3.5: Different situations for the Inverse Gaussian distribution

In that sense the Inverse Gaussian distribution produces much better results
(compare situations 1,4,5,6,8,9). For example in situation 5 of the L ∼ IG case
the density is very low from 0 to 1 and in the L ∼ Gamma case it is already high
at 0. This is important since we get completely different density shapes. The
very extreme situation like 3 is similar to the L ∼ Gamma situation 2. Also the
situations with small γL and large µG are close to each other (compare situations
7). Therefore, situations when γL ≤ 1 are acceptable like in the L ∼ Gamma case.
Situations with γL = 2 are acceptable as well but γL = 4 case is still too extreme.
Therefore, the proposed region of interest for γL is γL ≤ 2.5 when L ∼ IG with
the representative values {0.75, 1.5, 2, 2.5}.

3.4.3 Situations when L ∼ Lognormal(αL, βL)

The last distribution we are going to analyze as a candidate for the mixing dis-
tribution is the lognormal. Parameters αL and βL can be expressed as

αL = log(µG)− 0.5 log(1 + γ2
L) = log(µG)− 0.5 log(1 + γ2

G − µ−1
G ),

βL =
√

log(1 + γ2
L) =

√
log(1 + γ2

G − µ
−1
G ).

Table 3.6 contains parameter values for the different situations.
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Situation µL σL γL γG αL βL Skewness Kurtosis
1 5 5 1 1.09 1.2629 0.8326 4 38
2 5 10 2 2.04 0.80472 4.2686 14 944
3 5 20 4 4.02 0.1928 1.6832 76 94189
4 10 5 0.5 0.59 2.1910 0.4724 1.6 5
5 10 10 1 1.04 1.956 0.8326 4 38
6 10 20 2 2.02 1.4979 1.2686 14 944
7 20 5 0.25 0.34 2.9654 0.2462 0.77 1.1
8 20 10 0.5 0.55 2.8841 0.4724 1.6 5
9 20 20 1 1.02 2.6492 0.8326 4 38

Table 3.6: Different situations for the lognormal distribution

ε ≤ 0.05
0.05 ≤ γC ≤ 2.5

λ ≥ 400
5 ≤ µG ≤ 20

γL ≤ 1.5 for L ∼ Gamma
γL ≤ 2.5 for L ∼ IG

Table 3.7: Restricted region of parameters which is formulated as the region of
interest.

It is quite clear already from the table that the lognormal distribution is too
extreme for our purposes. Situations with small µG and large γL produce huge
kurtoses. We certainly do not have much mass at the beginning of the distribution,
but now we have another extreme. The tail is definitely too heavy. We are not
presenting all the densities for the lognormal distribution since their shapes are
very close to the Inverse Gaussian case. The only difference is that the tail of the
distribution is much heavier. As an example we compare situation 3 of the L ∼ IG
case with situation 3 of the L ∼ Lognormal case (see Figure 3.5). Therefore, the
conclusion is not to use the lognormal distribution as a mixing distribution for
the group size random variable.

All the parameters of Model 4 have been discussed one by one, including the
range of interest for each of them, see Table 3.7.Table 3.8 summarizes all the
representative parameters values under the different model assumptions.
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Figure 3.5: Comparison of the Inverse Gaussian situation 3 with the lognormal
situation 3



66 CHAPTER 3. THE MODEL

L ∼ Gamma(αL, βL) L ∼ IG(αL, βL)
11 12

λ = 400 λ = 400
ε = 0.03 ε = 0.03
{µC , γC} = {µC , γC} =
= {[100000, 0.4], = {[100000, 0.4],
[100000, 1.6]} [100000, 1.6]}
{µG, γL} = {µG, γL} =
= {[5, 0.75], [5, 1.5], [10, 0.75], = {[5, 0.75], [5, 1.5], [5, 2], [5, 2.5],
[10, 1.5], [20, 0.75], [20, 1.5]} [10, 0.75], [10, 1.5], [10, 2], [10, 2.5],

C
∼
L
og
n
or
m
a
l(
α
C
,β
C

)

[20, 0.75], [20, 1.5], [20, 2], [20, 2.5]}

21 22
λ = 400 λ = 400
ε = 0.03 ε = 0.03
{µC , γC} = {µC , γC} =
= {[100000, 0.4], = {[100000, 0.4],
[100000, 1.6]} [100000, 1.6]}
{µG, γL} = {µG, γL} =
= {[5, 0.75], [5, 1.5], [10, 0.75] = {[5, 0.75], [5, 1.5], [5, 2], [5, 2.5],

C
∼
I
G

(α
C
,β
C

)

[10, 1.5], [20, 0.75], [20, 1.5]} [10, 0.75], [10, 1.5], [10, 2], [10, 2.5],
[20, 0.75], [20, 1.5], [20, 2], [20, 2.5]}

31 32
λ = 400 λ = 400
ε = 0.03 ε = 0.03
{µC , γC} = {µC , γC} =
= {[100000, 0.4], = {[100000, 0.4],
[100000, 1.6]} [100000, 1.6]}
{µG, γL} = {µG, γL} =
= {[5, 0.75], [5, 1.5], [10, 0.75] = {[5, 0.75], [5, 1.5], [5, 2], [5, 2.5],
[10, 1.5], [20, 0.75], [20, 1.5]} [10, 0.75], [10, 1.5], [10, 2], [10, 2.5],

C
∼
G
a
m
m
a
(α
C
,β
C

)

[20, 0.75], [20, 1.5], [20, 2], [20, 2.5]}

Table 3.8: Parameters values under the different assumptions



Chapter 4

Quantities of interest and
calculation methods

Chapter 3 describes in detail the model for the aggregated sum S which will be
the main point of consideration in the present thesis. Having the model we can
analyze any insurance (or reinsurance) contract which is based on S. This chap-
ter introduces several insurance (or reinsurance) products (which are naturally
functions of S), the behavior of which will be analyzed in later chapters under
the dependence assumption. For each insurance product presented here we will
suggest several calculation methods. Each method has its own advantages and
disadvantages, which basically depend on the distributional assumptions of the
model.

When we are interested in the impact of small dependencies on tail events, the
Stop-Loss contract is a good tool for such an analysis. This contract was used as
a basic tool in the work of Albers [1999] and later in Reijnen [2003] and Reijnen
et al. [2005]. The idea of the contract is simple. Denoting by S the total risk
amount, the Stop-Loss contract covers the part of that risk which is above some
retention level a. Therefore, the total risk S is divided into two parts: retained
risk S − (S − a)+ and Stop-Loss risk (S − a)+ (here (S − a)+ = max(S − a, 0)).
Considering reinsurance as an example, the reinsurer in that case gets the risk
(S − a)+ and the remaining part S − (S − a)+ is left for the insurance company
which buys the contract. An important characteristic of the Stop-Loss contract is
the net Stop-Loss premium (from now on simply SLP ) which is often considered
as a basic part of the price of the contract. It is defined as the expectation
E[(S−a)+] of the Stop-Loss risk and this quantity is the first quantity of interest
which will be investigated in the present thesis.

The SLP is also used as risk measure for ordering of risks, see e.g. Dhaene
et al. [2006], where several results on Stop-Loss ordering can be found. It is
clear that in reality SLP cannot be the total price of the Stop-Loss contract

67
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because the reinsurers position becomes very risky with an expected profit 0.
Some positive loading definitely has to be added to the SLP . The value of such
loading depends on many factors and it has to be acceptable for both sides: the
insurance company and the reinsurer. It can be some fixed value or it can depend
on some risk characteristic like mean or standard deviation. For the discussion
of different kinds of reinsurance premiums we refer to Kaas et al. [2001]. That is
why the second quantity which is considered to be important is the variance of
the Stop-Loss contract and the retained risk.

The last quantity which will be investigated is the Value at Risk (V aR) of the
aggregated claim amount. V aR is a quite popular risk measure in the financial
world. For given p, the V aR is defined as V aR = s = F−1

S (p), where FS(s) =
P (S ≤ s) and therefore it can be presented as an upper limit for the aggregated
claim given some probability (risk) value.

In total there are three ways which will be used as calculation tools: con-
volutions, approximations and simulations. Direct Monte-Carlo simulations do
not have any specific underlying conditions and the accuracy of the final result
only depends on the number of simulations and the random number generator.
However, since the form of the model is quite complicated, the method of di-
rect simulation can be very time consuming. Our research showed that when the
distributional assumptions of the model are not simple (in the sense of random
number generation), the needed precision can be obtained only after several days
of computer work. This fact forced us to think about improvement of the sim-
ulation speed. An alternative simulation method which is presented here is the
method of hybrid simulations.

The accuracy of the convolutions method is limited only by the value of the
summation index and probably some internal numerical methods which may have
to be applied, but the method has two main drawbacks: it can be very time
consuming (depending on the model assumptions) and it can be applied in practice
only when the assumed distributions of L and C are closed under convolution.
From Table 3.2 only the Gamma and IG satisfy this condition.

The method of approximations was described in detail in the thesis of Reij-
nen [2003]. A short overview of the used approximation techniques is presented
in the Introduction. A more detailed description can be found in Section 4.1.4.
Unlike the simulation or convolution case, the accuracy of the approximations
has strict limits and depends on the choice of the underlying parameters. The
approximations which are used here are the IG and Gamma-IG. The remaining ap-
proximations (Edgeworth expansions, Normal power, Gamma) which were tested
in Reijnen et al. [2005] are not included. These approximations did not show
good results when Model 3 was assumed and therefore they are not expected to
be acceptable while working with Model 4. For each of the quantities considered,
several possible calculation methods will be suggested and discussed. It should
be remembered that we do not only want to calculate the quantities numerically,
but are also or sometimes mainly interested in their behavior depending on the
underlying parameters, see Section 1.5. We will start with the SLP .
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4.1 Net Stop-Loss premium
The SLP is defined as E[(S − a)+] where S is the aggregated claim amount and
a is the retention level. To calculate such an expectation we need the density of
S. Therefore, the calculation of the SLP (as well as the remaining quantities)
using the convolution method is based on the calculation of the true density of
S. The main idea of the approximation method is to replace the density of S by
another density of a simpler form. This allows us to obtain more simple integrals
as well, which (hopefully) can be solved analytically. The simulation method uses
realizations of the random variables which appear in the model. Therefore, the
random number generator plays a major role here. As was mentioned at the be-
ginning of the chapter, two simulation methods will be suggested as possible SLP
calculation tools. Depending on the distributional assumptions in the model, one
or the other method will be used in our analysis. The first simulation method is
the direct (or simple) Monte-Carlo simulation which is described in Section 4.1.2.
An alternative simulation method presented here is the method of hybrid simu-
lations. All the theoretical details, as well as the results on testing the accuracy
of the method, are presented in Section 4.1.3. The sections that follow present
three calculation methods for the SLP .

4.1.1 Convolutions
The basic structure of the underlying model is the (random) summation of certain
random variables. Therefore a very straightforward way to get the density of S
is the convolution method. As was mentioned before, to apply this method, the
underlying distributions of C and L have to be closed under convolution. From
Table 3.2 the Gamma and IG satisfy this condition, and therefore only these
distributions are going to be considered in the present section.

The general form of Model 4 is

S =
N∑
i=1

Ci +
H∑
k=1

Gk∑
j=1

Djk.

Assuming that C , D we can write it in the form

S =
W∑
i=1

Ci, (4.1)

where

W = N +
H∑
k=1

Gk (4.2)

with the assumptions described in Section 1.3. We consider several situations
where C and L are assumed to be Gamma or IG.
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Theorem 4.1. Suppose that Model 4 (see Table 3.1) holds. Then, if C ∼
Gamma(αC , βC) and L ∼ Gamma(αL, βL) (see Table 3.2), the needed SLP can
be calculated as

E[(S − a)+] =
∞∑
w=1

P (W = w)

×
{wαc
βc

[1− Fγ(a;wαc + 1, βc)]− a[1− Fγ(a;wαc, βc)]
}

(4.3)

with

P (W = w) = (λ(1− ε))we−λ(ε/µG+1−ε)

(
1
w!

+
∞∑
h=1

w∑
j=0

[
(ελ/µG)h

h!

×
βhαLL Γ(hαL + j)

(λ(1− ε))j(w − j)!Γ(hαL)j!(βL + 1)hαL+j

])
, (4.4)

where Fγ denotes the Gamma cdf.

Proof. The Gamma distribution is closed under convolution, hence, conditionally
on W = w, we get that

w∑
i=1

Ci ∼ Gamma(wαc, βc)

and the density of S takes a form

fS(s) =
∞∑
w=1

P (W = w)swαc−1 β
wαc
c e−βcs

Γ(wαc)
.

Note that the summation index starts from 1 instead of 0. Theoretically the
probability P (W = 0) is not 0, but zero convolution is defined to be equal to
0, resulting in P (W = 0) × 0 = 0. Therefore, the index zero is skipped in the
calculation.

Using the above formulas we get

E[(S − a)+] =
∫ ∞
a

(s− a)
∞∑
w=1

P (W = w)swαc−1 β
wαc
c e−βcs

Γ(wαc)
ds

=
∞∑
w=1

P (W = w)
∫ ∞
a

(s− a)swαc−1 β
wαc
c e−βcs

Γ(wαc)
ds.
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We define

I : =
∫ ∞
a

(s− a)swαc−1 β
wαc
c e−βcs

Γ(wαc)
ds

=
∫ ∞
a

sswαc−1 β
wαc
c e−βcs

Γ(wαc)
ds− a

∫ ∞
a

swαc−1 β
wαc
c e−βcs

Γ(wαc)
ds

= I1 − aI2 (4.5)

and calculate separately

I1 =
∫ ∞
a

s(wαc+1)−1 β
wαc
c e−βcs

Γ(wαc)
ds (4.6)

=
wαc
βc

∫ ∞
a

s(wαc+1)−1 β
wαc+1
c e−βcs

Γ(wαc + 1)
ds

=
wαc
βc

(
1−

∫ a

0

s(wαc+1)−1 β
wαc+1
c e−βcs

Γ(wαc + 1)
ds

)
=
wαc
βc

[1− Fγ(a;wαc + 1, βc)]

and (using the same arguments)

I2 = 1− Fγ(a;wαc, βc), (4.7)

which gives us the general form (4.3).
To get the final result we need to calculate the probabilities P (W = w). The

assumption L ∼ Gamma(αL, βL) leads to G ∼ NB(αL, βL), the probability mass
function of which is given by

P (G = k;αL, βL) =
∫ ∞

0

fP (k; l)fγ(l;αL, βL)dl

=
∫ ∞

0

lk

k!
e−l

lαL−1e−lβLβαLL
Γ(αL)

dl

=
βαLL

Γ(αL)k!

∫ ∞
0

lαL−1+k exp(−lβL − l)dl

=
βαLL

Γ(αL)k!(βL + 1)αL+k

×
∫ ∞

0

(l(βL + 1))(αL+k)−1 exp(−l(βL + 1))d(l(βL + 1))

=
βαLL

Γ(αL)k!(βL + 1)αL+k
Γ(αL + k).
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The negative binomial distribution is closed under convolution. Therefore, we
get that

∑h
k=1Gk ∼ NB(hαL, βL). Hence, conditionally on H = h we have to

consider the convolution of Poisson and negative binomial random variables. This
convolution law is known in the actuarial literature as the Delaporte distribution.
In our case we have N ∼ P (λ(1− ε)) which gives

P (N = n) = e−λ(1−ε) (λ(1− ε))n

n!

and
∑h
k=1Gk ∼ NB(hαL, βL) which gives

P

(
h∑
k=1

Gk = j

)
=

βhαLL Γ(hαL + j)
Γ(hαL)j!(βL + 1)hαL+j

.

Hence, we get

P (W = w|H = h) =
w∑
j=0

P

(
h∑
k=1

Gk = j

)
P (N = w − j)

=
w∑
j=0

βhαLL Γ(hαL + j)e−λ(1−ε)(λ(1− ε))w−j

Γ(hαL)j!(βL + 1)hαL+j(w − j)!

and the total probability is

P (W = w) =
∞∑
h=1

[
P (H = h)

w∑
j=0

βhαLL Γ(hαL + j)
Γ(hαL)j!(βL + 1)hαL+j

× e−λ(1−ε) (λ(1− ε))w−j

(w − j)!

]
+ P (H = 0)P (N = w).

According to our model H ∼ P (ε λµG ), which makes

P (H = h) = e−ελ/µG
(ελ/µG)h

h!
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and the final formula for P (W = w) takes a form

P (W = w) =
∞∑
h=1

∑
0≤j≤w

[
e−ελ/µG

(ελ/µG)h

h!
βhαLL Γ(hαL + j)

Γ(hαL)j!(βL + 1)hαL+j

×e−λ(1−ε) (λ(1− ε))w−j

(w − j)!

]
+ P (H = 0)P (N = w)

= e−ελ/µGe−λ(1−ε)(λ(1− ε))w
∞∑
h=1

∑
0≤j≤w

[
(ελ/µG)h

h!
βhαLL Γ(hαL + j)

Γ(hαL)j!(βL + 1)hαL+j

× 1
(λ(1− ε))j(w − j)!

]
+ e−λ(ε/µG+1−ε) (λ(1− ε))w

w!
,

which completes the proof. �

Now we have everything we need for the calculation of E[(S − a)+] when
C and L are assumed to be Gamma distributed. Formulas (4.3) and (4.4) can
be used to get the numerical results. At this point several difficulties have to
be mentioned which the reader will certainly encounter while applying (4.3) and
(4.4). From a first glance, these seem nice formulas which can be used directly to
obtain E[(S−a)+]. However, several inpleasant parts should be mentioned which
blow up the "direct application" illusion.

• The most obvious one is the summation till infinity at two places (for w
and for h). It is clear that in practice it is impossible to perform such a
summation. Calculation has to be stopped at some point and this point will
obviously determine the calculation accuracy.

• Note that in formula (4.3) the expression P (W = w) is multiplied by some
function of w (and many other parameters). Certain values of w can lead
to very small values of P (W = w) (even of order 10−10). But the second
factor in this multiplication can be very large with the same value of w (let
say of order 1015). This means that the accuracy of P (W = w) has to be
at least up to 15 digits: if it is not, we can get huge errors. The problem
is that it is not known in advance which accuracy is required. It has to be
defined for each w separately.

• One more difficulty in calculation is hidden in the summation of formula
(4.4). Here we have to deal with factorials like j! and gamma functions like
Γ(hαL + j). The problem is that j can reach large values like 400 or 600,
which makes it necessary to deal with such numbers as 400! or 600! (as well
as Γ(400) which can be written as 399!). The largest number in C++ which
modern computer can operate with is 1.7 × 10308, but 400! is much larger
than that and hence it is necessary to tackle this problem as well.
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The points above are just some examples of difficulties in application. Appendix
A1 contains a detailed overview of all possible problems and their solutions. There
we will present as a result the complete implementation algorithm for formulas
(4.3) and (4.4).

Theorem 4.2. Suppose that Model 4 (see Table 3.1) holds. Then, if C ∼
Gamma(αC , βC) and L ∼ IG(αL, βL) (see Table 3.2), the needed SLP can be
calculated using (4.3) with

P (W = w) = (λ(1− ε))we−λ(ε/µG+1−ε)

(
1
w!

+
∞∑
h=1

w∑
j=0

j−1∑
k=0

(ελ/µG)h

h!

(
βL

2hαL

)k

× e−(hαL/βL){(1+2βL)1/2−1}(hαL)j(j − 1 + k)!(1 + 2βL)−(j+k)/2

j!(j − 1− k)!k!(λ(1− ε))j(w − j)!

)
. (4.8)

Proof. Since C ∼ Gamma, (4.3) follows directly from the proof of Theorem 4.1.
The only step we have to prove is the formula for the probabilities P (W = w).
Now we have L ∼ IG(αL, βL). In that case we have to deal with the Poisson-IG
mixture. According to the model assumptions, the group sizes G ∼ P (L), for
which the probability generating function PG is given by

PG(z) = exp(−(αL/βL){[1− 2βL(z − 1)]1/2 − 1}).

To get the probabilities P (G = n) it is necessary to differentiate this function n
times. Omitting all the calculations, the probabilities can be written as

pn = P (G = n) = p0
αnL
n!

n−1∑
k=0

(n− 1 + k)!
(n− 1− k)!k!

(
βL

2αL

)k
(1 + 2βL)−(n+k)/2, (4.9)

where

p0 = exp(−(αL/βL){(1 + 2βL)1/2 − 1}).

So far we have discussed the single Poisson-IG mixture, but in our case we
have to deal with the sum

∑H
k=1Gk where each Gk ∼ Poisson − IG(αL, βL).

Fortunately the Poisson-IG mixtures are closed under convolution, therefore con-
ditionally on H = h we have that

∑h
k=1Gk ∼ Poisson − IG(hαL, βL). We are

interested in P (W = w) with W defined in (4.2). Therefore, conditionally on
H = h we have to consider the convolution of Poisson and Poisson-IG random
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variables. This leads to

P (W = w|H = h) =
w∑
j=0

P

(
h∑
k=1

Gk = j

)
P (N = w − j)

=
w∑
j=0

exp(−(hαL/βL){(1 + 2βL)1/2 − 1}) (hαL)j

j!

×
j−1∑
k=0

(j − 1 + k)!
(j − 1− k)!k!

(
βL

2hαL

)k
(1 + 2βL)−(j+k)/2

× exp(−λ(1− ε)) (λ(1− ε))w−j

(w − j)!
(4.10)

and the total probability thus is

P (W = w) = P (H = 0)P (W = w|H = 0) +
∞∑
h=1

P (H = h)P (W = w|H = h)

= P (H = 0)P (N = w) +
∞∑
h=1

exp(−ελ/µG)
(ελ/µG)h

h!

×
∑

0≤j≤w

exp(−(hαL/βL){(1 + 2βL)1/2 − 1}) (hαL)j

j!

×
j−1∑
k=0

(j − 1 + k)!
(j − 1− k)!k!

(
βL

2hαL

)k
(1 + 2βL)−(j+k)/2

× exp(−λ(1− ε)) (λ(1− ε))w−j

(w − j)!
, (4.11)

from which (4.8) follows directly. �

Possible difficulties to be faced while applying (4.8) are discussed in Appendix
A2. Here we present an important result which can be helpful while calculating
pn = P (G = n) which appears in Theorem 4.2.

Remark 4.1. Practical application of (4.9) can be very time consuming because
of the huge factorials which have to be calculated during the calculation process.
An alternative method is to use the recursive formula which appeared in Willmot
[1986]. By defining

p1 = αL(1 + 2βL)−1/2p0,

the needed probabilities can be calculated using the identity

(1 + 2βL)n(n− 1)pn = 2βL(n− 1)(n− 3/2)pn−1 + α2
Lpn−2. (4.12)
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Formula (4.9) is useful if we would like to have the explicit expression for the
probability P (W = w), but it is definitely better to use (4.12) in numerical
calculations. �

Theorem 4.3. Suppose that Model 4 (see Table 3.1) holds. Then, if C ∼
IG(αC , βC) and L ∼ Gamma(αL, βL) (see Table 3.2), the needed SLP can be
calculated as

E[(S − a)+] =
∞∑
w=1

P (W = w)

× [Φ (x3) (wαC − a) + ex1Φ (−x2) (wαC + a)] , (4.13)

where Φ(·) denotes the standard normal cdf, P (W = w) is calculated using (4.4)
and x1, x2, x3 are defined as

x1 = 2
wαC
βC

> 0,

x2 =
a+ wαC√

βCa
> 0, (4.14)

x3 =
wαC − a√

βCa
.

Proof. The Inverse Gaussian distribution is closed under convolution. Hence,
conditionally on W = w we have

w∑
i=1

Ci ∼ IG(wαc, βc)

and the density of S equals

fS(s) =
∞∑
w=1

P (W = w)fIG(s;wαc, βc)

=
∞∑
w=1

P (W = w)
wαc√
2πβcs3

exp(−(s− wαc)2/(2βcs)).

Having the density of S we can calculate

E[(S − a)+] =
∞∑
w=1

P (W = w)

×
∫ ∞
a

(s− a)
wαc√
2πβcs3

exp(−(s− wαc)2/(2βcs))ds. (4.15)
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Since L ∼ Gamma we can use (4.4) to get P (W = w) (see the proof of Theorem
4.1). The integration part can be calculated using some numerical algorithm, or
it is possible to rewrite it using the standard normal distribution. To do it we
denote

I :=
∫ ∞
a

(s− a)fIG(s;wαC , βC)ds

and split it in the form

I =
∫ ∞
a

sfIG(s;wαC , βC)ds− a
∫ ∞
a

fIG(s;wαC , βC)ds

= E[IG(wαC , βC)]−
∫ a

0

sfIG(s;wαC , βC)ds

− a
(

1−
∫ a

0

fIG(s;wαC , βC)ds
)
,

where IG(wαC , βC) is a random variable with the Inverse Gaussian distribution
and parameters wαC and βC . Under our parametrization E[IG(wαC , βC)] =
wαC . The integral

∫ a
0
fIG(s;wαC , βC)ds represents the Inverse Gaussian cdf at

point a and can be written using the standard normal cdf. It is not that obvious,
but the second integral

∫ a
0
sfIG(s;wαC , βC)ds can also be represented as a linear

combination of two normal cdf’s. Using the identities

d
(

Φ
(
s−α√
βs

)
+ e2α/βΦ

(
−s−α√
βs

))
ds

= fIG(s;α, β), (4.16)

d
(
−αΦ

(
α−s√
βs

)
− αe2α/βΦ

(
−s−α√
βs

))
ds

= sfIG(s;α, β), (4.17)

we can write the needed integrals as

∫ a

0

fIG(s;wαC , βC)ds

=
[
Φ
(
s− wαC√

βCs

)
+ e2wαC/βCΦ

(
−s− wα√

βCs

)] ∣∣∣∣∣
s=a

−
[
Φ
(
s− wαC√

βCs

)
+ e2wαC/βCΦ

(
−s− wαC√

βCs

)] ∣∣∣∣∣
s=0

= Φ
(
a− wαC√

βCa

)
+ e2wαC/βCΦ

(
−a− wαC√

βCa

)
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and

∫ a

0

sfIG(s;wαC , βC)ds

=
[
−wαCΦ

(
wαC − s√

βCs

)
− wαCe2wαC/βCΦ

(
−s− wαC√

βCs

)] ∣∣∣∣∣
s=a

−
[
−wαCΦ

(
wαC − s√

βCs

)
− wαCe2wαC/βCΦ

(
−s− wαC√

βCs

)] ∣∣∣∣∣
s=0

= −wαCΦ
(
wαC − a√

βCa

)
− wαCe2wαC/βCΦ

(
−a− wαC√

βCa

)
+ wα. (4.18)

The final integral takes a form

I = wαC + wαCΦ
(
wαC − a√

βCa

)
+ wαCe

2wαC/βCΦ
(
−a− wαC√

βCa

)
− wαC

− a
(

1− Φ
(
a− wαC√

βCa

)
− e2wαC/βCΦ

(
−a− wαC√

βCa

))
= Φ

(
wαC − a√

βCa

)
(wαC − a) + e2wαC/βCΦ

(
−a− wαC√

βCa

)
(wαC + a). (4.19)

By defining

x1 = 2
wαC
βC

> 0,

x2 =
a+ wαC√

βCa
> 0,

x3 =
wαC − a√

βCa
,

we get the final formula (4.13). �

Formula (4.13) looks very nice, but again we have to point out numerical
difficulties the user will certainly encounter. For the detailed explanation of the
problem and its solution see Appendix A3.

Combining the previous results, we get

Theorem 4.4. Suppose that Model 4 (see Table 3.1) holds. Then, if C ∼
IG(αC , βC) and L ∼ IG(αL, βL) (see Table 3.2), the needed SLP can be cal-
culated using (4.13) and (4.8).

Proof. Since C ∼ IG, the general form of the SLP can be written in the
form (4.13) (see Theorem 4.3). As soon as L ∼ IG, the probabilities P (W = w)
have a form (4.8) according to Theorem 4.2. �
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4.1.2 Direct Monte-Carlo Simulations

Direct (or simple) Monte-Carlo simulation is another numerical tool which we are
going to use for the SLP calculation. The advantage of this method is that it
does not require any specific assumptions (like closedness under convolution in
the method of convolutions) for the random variables of the model. However, it
also has a drawback. In case the distributional assumptions of the model are com-
plicated (in the sense of generation of the random variables involved), the method
can be very time consuming. It can take several days of computer work to get
the needed precision. Therefore, the method will be used when the distributional
assumptions of the model are reasonably simple. Considering the list of distri-
butions we are using in our research (see Table 3.2), the lognormal, Gamma and
Poisson random variables can be generated reasonably fast, while the generation
of IG random variables takes more time, which significantly complicates the sim-
ulation process. Moreover, for getting more insight in the structure of E[(S−a)+]
Monte-Carlo simulation is less helpful than a reasonably simple analytic formula,
see also Section 1.5. Therefore, the method will be used only when it is really
necessary, i.e. when the remaining methods can not be used due to some rea-
son. Considering our situation, we suggest not to use the simple Monte-Carlo
simulations in case the IG distribution is involved in the model.

The direct (or simple) Monte-Carlo simulation of the SLP has a quite simple
structure. The main step is to generate the SNS = {S1, S2, . . . , SNS} sample using
the assumptions of Model 4 (see Chapter 3 and Table 3.1). Here NS represents
the number of simulations. Having this sample we fix the retention level a and
calculate (SNS − a)+ = {(S1 − a)+, (S2 − a)+, . . . , (SNS − a)+}. The simulated
SLP is given by the right hand side of the expression

E[(S − a)+] ≈ (SNS − a)+ =
1
NS

NS∑
i=1

(Si − a)+. (4.20)

Obviously, the ” ≈ ” sign in (4.20) can be replaced by the ” = ” only when
NS = ∞. Otherwise, it remains a major question how close E[(S − a)+] and
(SNS − a)+ are. It is clear that the larger NS , the higher the accuracy of the
simulations, but it is very hard to say something specific about the simulations
accuracy for given NS . This type of question is very important since half of the
analysis will be based on the simulations (the second half will be based on the
convolutions), and we have to be sure that the accuracy of the simulations is
reasonable for our purposes. For the evaluation of the accuracy of simulations we
use the theory of confidence intervals. The idea is to construct intervals which
contain E[(S−a)+] with some (quite high, like 0.95) confidence. Using this theory
we can control the length of the confidence intervals by increasing (or decreasing)
NS .

Denote the sample mean by X = (SNS − a)+, the population mean by µ =
E[(S − a)+], the population standard deviation by σ = St.dev[(S − a)+] and the
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sample standard deviation by SX = St.dev[(SNS − a)+], which is defined by

S2
X =

1
NS − 1

NS∑
i=1

((Si−a)+−X)2 =
1

NS − 1

NS∑
i=1

[(Si−a)+]2− NS
NS − 1

X
2
. (4.21)

As is well known from standard theory,[
X −

Φ−1
(
1− α

2

)
SX√

NS
, X +

Φ−1
(
1− α

2

)
SX√

NS

]
. (4.22)

is an approximate (1−α) confidence interval for NS large (which obviously is the
case).

Hence, if we denote the desired length of the confidence interval by Len, the
number of simulations which is enough to reach Len is given by

NS =
(

2Φ−1
(

1− α

2

) SX
Len

)2

. (4.23)

However, we do not define the absolute length of the confidence interval which
appears in (4.23). The relative length of the confidence interval (which will be
defined in Chapter 5) will be used instead. Therefore the values of X and SX will
be defined during the simulation process. A pilot study is performed before the
main simulation procedure. The idea is to perform 10000 simulations to get the
first approximation of X and SX and then continue simulating step by step (say
by 100 simulations), updating the values of X and SX , until the needed precision
(which is defined by the relative length of the confidence interval) is reached. In
later chapters this theory will be used to control the precision of the numerical
output while using the Monte-Carlo simulation technique.

4.1.3 Hybrid Monte-Carlo Simulations
So far we have described the direct Monte-Carlo simulation method. The main
disadvantage of the method is the calculation time. Sometimes a large number
of simulations has to be performed to get the needed length of the confidence
interval. Complicated distributional assumptions of the model make this process
very time consuming. In this section an alternative simulation method is presented
which is much faster than the direct Monte-Carlo method. We suggest to use this
alternative method when the IG distribution is involved in the model.

Our calculation target is E[(S − a)+]. This means that we have to deal with
the tail of the distribution of S. Therefore, when we use a direct Monte-Carlo
simulation method, the vast majority of generated values of S are less than a.
This means that we do not use these at all. To obtain the final result we use
only a few percents of the total number of simulated values. It would be much
faster to simulate (somehow) only the values from the tail of the distribution.
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Indeed, there are a lot of importance sampling methods which suggest to change
the underlying distribution, sample random variates from the needed region and
get the answer as a weighted average. But unfortunately such methods are not
applicable in our situation since we do not know the true distribution of S, which
certainly has to play a role in the procedure of defining the weights.

Instead, we suggest to use a method which can be called the hybrid simulation
method. It is a mixture of the analytical formulas and the direct Monte-Carlo
simulation (therefore we called it hybrid).

According to the law of total expectation we can write that

E[(S − a)+] = E[E[(S − a)+|W ]].

Here S is defined by (4.1) and W by (4.2). The outside expectation is the ex-
pectation w.r.t W . Hence, using the direct Monte-Carlo method, we can write
that

E[E[(S − a)+|W ]] ≈ 1
NS

NS∑
i=1

E[(S − a)+|W = wi]

=
1
NS

 ∑
wi>30

E[(S − a)+|W = wi] +
∑
wi≤30

E[(S − a)+|W = wi]

 . (4.24)

Here we divided all the simulated values of W into two parts. The first part
contains the realizations of W which are > 30 and the second part contains the
realizations of W which are ≤ 30. Given that W = wi, S takes a form of a simple
sum of random variables which (according to the Central Limit Theorem) can
be approximated by a normal random variable as soon as the summation index
wi is large enough. In our situation E[W ] = λ is typically chosen as 400, see
Table 3.8. This means that the values of W will usually be much larger than
30. In the situation we consider, see again Table 3.8, P (W ≤ 30) turns out to
be approximately of order 10−100, which makes it almost impossible to encounter
the situation where a realization of W is ≤ 30. Therefore, we ignore the second
term in (4.24). Now consider the part of E[(S − a)+|W = wi] with wi > 30. Let

S̃ =
S − wiµC√

wiσC
(4.25)

and

ã =
a− wiµC√

wiσC
. (4.26)

In view of (4.26) we can write that

E[(S − a)+|W = wi] =
√
wiσCE[(S̃ − ã)+|W = wi].
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According to the Central Limit Theorem, we may approximate S̃ by Z with
Z ∼ N(0, 1) for wi > 30 and get

E[(S̃ − ã)+|W = wi] ≈ E[(Z − ã)+]

=
∫ ∞

ea (z − ã)φ(z)dz = φ(ã)− ã(1− Φ(ã)). (4.27)

Combining (4.24) and (4.27) gives

E[(S − a)+] ≈ 1
NS

NS∑
i=1

√
wiσC [φ(ã)− ã(1− Φ(ã))], (4.28)

where φ denotes the standard normal pdf, Φ denotes the standard normal cdf and
NS is the number of simulations.

Note that (4.28) allows us to deal directly with the tail of the distribution of
S. This means that all the simulated values will be used to get the final result.
The convergence rate in that case should be higher. The simulation itself will be
much faster since now we generate only W instead of the whole W,C1, . . . , CW .

Hence this is a definite improvement, but we should not forget that by using
this method we add one more source of error, namely a systematic one. This
means that the method does not converge to the true value anymore and some
bias will remain. Replacing (Si − a)+ in X and S2

X from (4.21) by
√
wiσC [φ(ã)− ã(1− Φ(ã))], (4.29)

we get a confidence interval for the hybrid Monte-Carlo simulation. It is very hard
to be more explicit in general, since matters depend on the underlying parameters.
Intuitively it is clear that for large values of a we can get situations where the
standard normal approximation is not the best one possible. Numerical analysis
shows that the systematic error (when a is large, µG and γL is small) can be
quite large in some situations. If a is large, we have to deal with the tail of
the distribution. Small values of µG and γL lead to realizations of W which
are probably not large enough to make the tail of the normalized sum close to
the standard normal tail. In such situations it is better to use a more refined
approximation. The Edgeworth expansions were tested as an alternative to the
simple standard normal approximation. By matching more moments we may
come closer to the tail of the approximated distribution. Without going into the
calculation details, the needed expectation becomes

E[(S̃ − ã)+|W = wi] ≈ φ(ã)− ã(1− Φ(ã))

+ φ(ã)
(
κ3

6
ã+

κ4

24
(ã2 − 1) +

κ2
3

72
(ã4 − 6ã2 + 3)

)
. (4.30)

Here κ3 and κ4 are the cumulants of the standardized sum S̃ given W = wi (and
not the cumulants of the total sum which are defined in Section 3.1!), that is
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Figure 4.1: Comparison of the Direct and Hybrid Monte-Carlo methods
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κ3 = µ3Cσ
−3
C w

−1/2
i and κ4 = (µ4Cσ

−4
C − 3)w−1

i .

The final formula for the hybrid simulation of SLP then becomes

E[(S − a)+] ≈ 1
NS

NS∑
i=1

√
wiσC

[
φ(ã)− ã(1− Φ(ã))

+ φ(ã)
(
κ3

6
ã+

κ4

24
(ã2 − 1) +

κ2
3

72
(ã4 − 6ã2 + 3)

)]
. (4.31)

Numerical analysis of this method shows a low systematic error and very fast cal-
culation speed. Figure 4.1 compares the desired direct and hybrid Monte-Carlo
simulation methods. The comparison method is based on the SLP calculation.
For each situation (with different underlying parameters), simulations were per-
formed until the needed confidence level was reached. Figure 4.1(b) presents the
number of simulations which was needed to reach the fixed confidence level. It can
be noted that the number of hybrid simulations is always less than the number of
direct simulations (especially for the large retention levels), which illustrates the
faster convergence rate. Figure 4.1(a) illustrates the relative errors (convolution
results play the role of the true values) of the two methods. It is seen that they are
close to each other, which means that the accuracy level of the hybrid simulations
method is practically the same as the one of the direct simulations.

The time gain (in hours) is presented in Figure 4.1(c). It can be seen that
for large retention levels the time gain can reach 2 hours for a single situation.
To give an example of the absolute time gain, we can mention that to obtain the
above pictures more than 14 hours was spent on the direct simulations while the
hybrid simulations did the same job during 11 minutes. So, the total time gain
was about 14 hours. The more general numerical analysis showed that the hybrid
simulation method is approximately 20 times faster than the direct Monte-Carlo.

4.1.4 Approximations

A brief description of the approximation techniques which are used in the present
thesis is given in Section 1.5. These are the approximations which were used in
Albers [1999], Reijnen [2003] and Reijnen et al. [2005]. Using the conclusions of
these papers, the most useful approximations are the IG and the Gamma-IG in
the sense that they showed the best results when Models 2 or 3 were assumed.
For this reason only these two approximations will be considered as candidates
for the approximations in Model 4.

The IG approximation was introduced in Chaubey et al. [1998]. The needed
density fS(s) (the density of the aggregate sum S) was approximated by the IG
density fIG(s − x0IG) (see Table 3.2). The underlying parameters αIG, βIG and
x0IG are chosen in such a way that the mean, variance and skewness of S are
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equal to the mean, variance and skewness of the IG random variable with density
fIG(s− x0IG). As a result we get the values of the parameters needed expressed
in terms of µS , σS , κ3S

αIG = 3σS/κ3S , βIG = κ3SσS/3 and x0IG = µS − 3σS/κ3S . (4.32)

Our calculation target in this section is the SLP which is defined as

E[(S − a)+] =
∫ ∞
a

(s− a)fS(s)ds. (4.33)

Using the IG approximation, the above integral is replaced by∫ ∞
a

(s− a)fIG(s− x0IG)ds,

which can be written as, cf. (4.13),

e2αIG/βIGΦ

(
− a− x0IG + αIG√

βIG(a− x0IG)

)
(αIG + a− x0IG)

+ Φ

(
αIG − a+ x0IG√
βIG(a− x0IG)

)
(αIG − a+ x0IG). (4.34)

The Gamma approximation was introduced in Seal [1977] and the density
fS(s) is approximated there by the Gamma density fγ(s − x0G) (see Table 3.2)
with parameters

αG = (2/κ3S)2, βG = 2/(κ3SσS) and x0G = µS − 2σS/κ3S . (4.35)

By using this approximation, the integral in (4.33) becomes∫ ∞
a

(s− a)fγ(s− x0G)ds,

which can be written as, cf. (4.3),

αG
βG

[1− Fγ(a− x0G;αG + 1, βG)]− (a− x0G)[1− Fγ(a− x0G;αG, βG)], (4.36)

where Fγ is the Gamma cdf.
The Gamma-IG approximation is a mixture of the Gamma and the IG ap-

proximation (see Chaubey et al. [1998]). The density fS(s) is approximated in
the following way

fS(s) ≈ fG−IG(s) = ωfγ(s− x0G) + (1− ω)fIG(s− x0IG).
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The approximation has seven parameters. Three of these (αIG,βIG and x0IG)
come from the IG approximation, another three (αG,βG and x0G) from the Gamma
approximation and they are as before. The last one (ω) is used to fit the fourth
cumulant. In other words, ω is chosen in such a way that

ωκ4G + (1− ω)κ4IG = κ4S ,

which defines

ω =
κ4IG − κ4S

κ4IG − κ4G
=

5
3κ

2
3S − κ4S

5
3κ

2
3S −

3
2κ

2
3S

. (4.37)

Note that the necessary condition for fG−IG to be a density is ω ∈ [0, 1] or,
equivalently, 3κ2

3S/2 ≤ κ4S ≤ 5κ2
3S/3. This is a quite strict limitation which, in

our case, is often not satisfied. Nevertheless, we still can use fG−IG outside this
range as a simple function (not a density) which approximates the density needed.
A similar trick was used in Albers [1999], where the Edgeworth expansions showed
very good approximation results while not being density functions. In fact, on
the interval in which we are interested (S > a = µS + kσS with 0 ≤ k ≤ 3), often
fG−IG(s) behaves like a density, in the sense that it is positive on this interval.

4.2 Variance of a Stop-Loss contract
The second quantity of interest which is considered in the present research is the
variance of the Stop-Loss contract. It is clear that in reality SLP cannot be the
total price of the Stop-Loss contract because the reinsurers position becomes very
risky with the expected profit 0. Some positive loading definitely has to be added
to the SLP . The value of such loading depends on many factors and it has to
be acceptable for both sides: the insurance company and the reinsurer. It can be
some fixed value or it can depend on some risk characteristic like mean or stan-
dard deviation. For the discussion of different kinds of insurance or reinsurance
premiums we refer to Kaas et al. [2001]. That is why the second quantity which
is considered to be important is the variance of the Stop-Loss contract. Since the
variance can be expressed in terms of the first two moments, it suffices to consider
only the second one; the first moment was already considered in the previous sec-
tion in the form of SLP . Therefore, E[((S − a)+)2] will be the calculation target
of this section. Just like in the previous section, we are going to consider three
calculation techniques: convolutions, simulations and approximations.

4.2.1 Convolutions

The general expression for the calculation of the second moment can be written
as

E[((S − a)+)2] =
∞∑
w=1

P (W = w)
∫ ∞
a

(s− a)2f∗wC (s;αc, βc)ds, (4.38)
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with W as given in (4.2). Here f∗wC stands for the w-fold convolution of the
density fC . Just like in the SLP case, the second moment calculation can be
divided into two parts: calculation of P (W = w) and calculation of the integral∫∞
a

(s− a)2f∗wC (s;αc, βc)ds.

Theorem 4.5. Suppose that Model 4 (see Table 3.1) holds. Then, for the calcu-
lation of E[((S − a)+)2] we have the following results:

(i) in case C ∼ Gamma(αC , βC) and L ∼ Gamma(αL, βL) (see Table 3.2) use
(4.38) with P (W = w) defined in (4.4) and

∫ ∞
a

(s− a)2f∗wC (s;αc, βc)ds

=
wαc(wαc + 1)

β2
c

[1− Fγ(a;wαc + 2, βc)]

− 2a
wαc
βc

[1− Fγ(a;wαc + 1, βc)]

+ a2[1− Fγ(a;wαc, βc)]. (4.39)

(ii) in case C ∼ Gamma(αC , βC) and L ∼ IG(αL, βL) use (4.38) with P (W =
w) defined in (4.8) and

∫∞
a

(s− a)2f∗wC (s;αc, βc)ds defined in (4.39).

(iii) in case C ∼ IG(αC , βC) and L ∼ Gamma(αL, βL) use (4.38) with P (W =
w) defined in (4.4) and∫ ∞

a

(s− a)2f∗wC (s;αc, βc)ds =
∫ ∞
a

(s− a)2fIG(s;wαC , βC)ds. (4.40)

(iv) in case C ∼ IG(αC , βC) and L ∼ IG(αL, βL) use (4.38) with P (W = w)
defined in (4.8) and

∫∞
a

(s− a)2f∗wC (s;αc, βc)ds defined in (4.40).

Proof. Assuming that L ∼ Gamma(αL, βL) or L ∼ IG(αL, βL), the calculation
of P (W = w) can be performed directly, using formulas (4.4) or (4.8) respectively
(see Theorems 4.1 and 4.2). In case C ∼ IG(αC , βC) identity (4.40) follows
directly from the closedness under convolution property of the IG distribution. In
case C ∼ Gamma(αC , βC), the integral

∫∞
a

(s − a)2f∗wC (s;αc, βc)ds can be split
as ∫ ∞

a

(s− a)2f∗wC (s;αc, βc)ds = I3 − 2aI1 + a2I2,
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where I1, I2 are defined in (4.5) and

I3 =
∫ ∞
a

s2fγ(s;wαc, βc)ds

=
∫ ∞
a

s(wαc+2)−1 β
wαc
c e−βcs

Γ(wαc)
ds

=
wαc(wαc + 1)

β2
c

∫ ∞
a

s(wαc+2)−1 β
wαc+2
c e−βcs

Γ(wαc + 2)
ds

=
wαc(wαc + 1)

β2
c

(1−
∫ a

0

s(wαc+2)−1 β
wαc+2
c e−βcs

Γ(wαc + 2)
ds)

=
wαc(wαc + 1)

β2
c

[1− Fγ(a;wαc + 2, βc)]. (4.41)

Application of (4.6), (4.7) and (4.41) directly gives (4.39). �

4.2.2 Direct Monte-Carlo Simulations

The main idea of the direct Monte-Carlo simulations is described in detail in
Section 4.1.2. Here we present the confidence interval calculation approach, which
is different from the SLP case.

Now we are interested in the variance of the Stop-Loss contract or, what is
more useful in practice, in its standard deviation. Just like before we generate the
SNS = {S1, S2, . . . , SNS} sample using Model 4 assumptions (see Table 3.1). Here
NS represents the total number of simulations. Having this sample we calculate
(SNS − a)+ = {(S1− a)+, (S2− a)+, . . . , (SNS − a)+} and the simulated standard
deviation of the Stop-Loss contract is

St.dev[(S − a)+] ≈

√√√√ 1
NS − 1

NS∑
i=1

((Si − a)+ − (SNS − a)+)2

=

√√√√ 1
NS − 1

NS∑
i=1

[(Si − a)+]2 − NS
NS − 1

((SNS − a)+)2, (4.42)

where

(SNS − a)+ =
1
NS

NS∑
i=1

(Si − a)+.

To construct a confidence interval for St.dev[(S−a)+] we divide NS into T parts:
NS1 , NS2 , . . . , NST . It is clear that in that case

∑T
i=1NSi = NS . Next, we
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calculate the sequence SX1 , SX2 , . . . , SXT , which is defined through

SXj =
1

NSj − 1

NSj∑
i=1

((Sij − a)+ − (SNSj − a)+)2

=
1

NSj − 1

NSj∑
i=1

[(Sij − a)+]2 −
NSj

NSj − 1
((SNSj − a)+)2, (4.43)

for j = 1 . . . T and can be presented as a realization of a random variable Y . Then
E[Y ] = V ar[(S − a)+]. Denote the sample mean by Y = 1

T

∑T
j=1 SXj . As soon

as the sample mean Y is considered, we can use the confidence interval theory
of Section 4.1.2, where the confidence interval was calculated for the mean. As a
result we get the confidence interval for the variance of the Stop-Loss contract as[

Y −
Φ−1

(
1− α

2

)
SY√

T
, Y +

Φ−1
(
1− α

2

)
SY√

T

]
, (4.44)

with SY defined as

SY =

√√√√ 1
T − 1

T∑
i=1

(SXi − Y )2 =

√√√√ 1
T − 1

T∑
i=1

S2
Xi
− T

T − 1
(Y )2.

Having a confidence interval for V ar[(S−a)+], we automatically get a confidence
interval for St.dev[(S − a)+] as√Y − Φ−1

(
1− α

2

)
SY√

T
,

√
Y +

Φ−1
(
1− α

2

)
SY√

T

 , (4.45)

Remark 4.2. Note that the method we use for the construction of the confidence
interval for the standard deviation is not the only one which is available in practice.
An alternative approach is to utilize the asymptotic normality of the sample
standard deviation itself. Knowing that

S2
X ∼ AN

(
σ2,

µ4 − σ4

NS

)
,

we directly obtain
(S2
X − σ2)

√
NS√

µ4 − σ4
∼ AN (0, 1)

and the confidence interval for the variance takes the form[
S2
X −

Φ−1
(
1− α

2

)√
µ4 − σ2

√
NS

, S2
X +

Φ−1
(
1− α

2

)√
µ4 − σ2

√
NS

]
.
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The fourth central moment µ4 and the variance σ2 are replaced by their estimates
and the asymptotic normality continue to hold. The confidence interval for the
standard deviation can be obtained by taking the square root in the both sides of
the interval.

We do not have any specific reason to use one or another method. The one
we use in practice nicely fits our simulation algorithm, therefore it was chosen as
a calculation tool for the confidence intervals. �

4.2.3 Hybrid Monte-Carlo Simulations
In this section the alternative simulation method for the variance of a Stop-Loss
contract will be discussed. The idea and the motivation of the method was already
presented in Section 4.1.3. Therefore, here we present only the main results.

Section 4.1.3 offers formulas for the calculation of SLP (see (4.28) and(4.31)).
Therefore, only the second moment of the Stop-Loss contract will be considered
here; the variance can be obtained using the identity V ar[(S − a)+] = E[((S −
a)+)2]− (E[(S−a)+])2. Hence, the calculation target now is E[max(S−a, 0)2] =
E[((S − a)+)2] which, according to the idea of the method, can be approximated
by

E[((S − a)+)2] = E[E[((S − a)+)2|W ]] ≈ 1
NS

NS∑
i=1

E[((S − a)+)2|W = wi].

(4.46)

We are going to utilize several identities which already appeared in the previous
sections.

Lemma 4.6. Suppose that ã is a constant. Then, denoting the standard normal
pdf and cdf by φ(·) and Φ(·), we have the following identities∫ ∞

ea φ(z)dz = 1− Φ(ã), (4.47)∫ ∞
ea zφ(z)dz = φ(ã), (4.48)∫ ∞

ea z2φ(z)dz = ãφ(ã) + 1− Φ(ã), (4.49)

∫ ∞
ea (z − ã)2φ(z)dz = (ã2 + 1)(1− Φ(ã))− ãφ(ã). (4.50)

Moreover, writing φ(j) for the jth derivative of φ, we have for j ≥ 3∫ ∞
ea (z − ã)2φ(j)(z)dz = −2φ(j−3)(ã) = (−1)j2φ(ã)Hj−3(ã), (4.51)
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where Hj is the jth Hermite polynomial.
Proof. Using

Φ(1)(z) =φ(z),

φ(1)(z) =− zφ(z),

φ(2)(z) =(z2 − 1)φ(z),

the results in (4.47)-(4.50) are straightforward. By partial integration we obtain
for j ≥ 3 ∫ ∞

ea (z − ã)2φ(j)(z)dz =
∫ ∞

ea (z − ã)2dφ(j−1)(z)

= (z − ã)2φ(j−1)(z)|∞ea −
∫ ∞

ea 2(z − ã)φ(j−1)(z)dz

= −
∫ ∞

ea 2(z − ã)dφ(j−2)(z) = −2(z − ã)φ(j−2)(z)|∞ea
+
∫ ∞

ea 2φ(j−2)(z)dz = 2
∫ ∞

ea dφ(j−3)(z) = 2φ(j−3)(z)|∞ea
= −2φ(j−3)(ã) = −2(−1)j−3φ(ã)Hj−3(ã)

= (−1)j2φ(ã)Hj−3(ã),

thus completing the proof of (4.51). �

To get the expectation we have to integrate
∫∞
a

(s − a)2fS(s)ds. Using the
definitions of S̃ (see (4.25)) and ã (see (4.26)), we can write that

E[(S − a)2+|W = wi] = wiσ
2
CE[(S̃ − ã)2+|W = wi].

According to the Central Limit Theorem, we can approximate S̃ by Z ∼ N(0, 1)
when wi is sufficiently large. Hence, we can write that

E[(S̃ − ã)2+|W = wi] ≈ E[(Z − ã)2+|W = wi]

=
∫ ∞

ea (z − ã)2φ(z)dz = (ã2 + 1)(1− Φ(ã))− ãφ(ã). (4.52)

Direct application of (4.46) and (4.52) yields

E[(S − a)2+] ≈ 1
NS

NS∑
i=1

wiσ
2
C [(ã2 + 1)(1 − Φ(ã)) − ãφ(ã)]. (4.53)

Such a calculation method has all the advantages which were explained in
Section 4.1.3. These are a very fast convergence rate and high accuracy (compared
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to the direct Monte-Carlo simulations) when the retention level is not very high.
When we have to deal with the tail of the distribution of S we can get situations
where the systematic error is quite high. In that case it is better to use Edgeworth
expansions instead of the standard normal approximation. In that case feS(s) in
(4.52) is replaced not by φ(s) but by

φ(s)− κ3
φ(3)(s)

6
+ κ4

φ(3)(s)
24

+ κ2
3

φ(6)(s)
72

.

Here κ3 and κ4 are the cumulants of the normalized sum S̃ given W = wi. In
that case, using (4.51), we obtain

E[(S̃ − ã)2+|W = wi]

≈
∫ ∞

ea (s− ã)2

(
φ(s)− κ3

φ(3)(s)
6

+ κ4
φ(4)(s)

24
+ κ2

3

φ(6)(s)
72

)
ds

= (ã2 + 1)(1− Φ(ã))− ãφ(ã) + φ(ã)
[
κ3

3
+H1(ã)

κ4

12
+H3(ã)

κ2
3

36

]
, (4.54)

from which directly follows

E[(S − a)2+] ≈ 1
NS

NS∑
i=1

wiσ
2
C

[
(ã2 + 1)(1− Φ(ã))

− ãφ(ã) + φ(ã)
[
κ3

3
+H1(ã)

κ4

12
+H3(ã)

κ2
3

36

] ]
. (4.55)

4.2.4 Approximations

Approximation techniques which are used in the calculation of the second mo-
ment of the Stop-Loss contract are described in Section 4.1.4. These are three
approximations: Gamma, IG and Gamma-IG. Since the idea of the approxima-
tion is based on the approximation of the underlying density, all the parameters
involved stay the same (see (4.35) for the parameters of the Gamma approxima-
tion, (4.32) for the IG approximation and (4.37) for the last parameter of the
Gamma-IG approximation). The following Lemma gives the expressions for the
approximation of the second moment of the Stop-Loss contract when different
approximations are applied.

Lemma 4.7. Suppose that Model 4 (see Table 3.1) holds. Then, for the approx-
imation of E[((S − a)+)2] we have the following results:
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(i) in case the Gamma approximation is used, the needed expectation can be ob-
tained as∫ ∞

a

(s− a)2fG(s− x0G;αG, βG)ds

=
αG(αG + 1)

β2
G

[1− Fγ(a− x0G;αG + 2, βG)]

− 2(a− x0G)
αG
βG

[1− Fγ(a;αG + 1, βG)]

+ (a− x0G)2[1− Fγ(a− x0G;αG, βG)], (4.56)

where parameters αG, βG, x0G are defined in (4.35).

(ii) in case the IG approximation is used, the needed expectation can be obtained
as
∫∞
a

(s − a)2fIG(s − x0IG;αIG, βIG)ds, where parameters αIG, βIG, x0IG

are defined in (4.32).

(iii) in case the Gamma-IG approximation is used, the needed expectation can be
obtained as

∫∞
a

(s− a)2fG−IG(s)ds, where

fG−IG(s) = ωfγ(s− x0G) + (1− ω)fIG(s− x0IG)

and parameters αG, βIG, x0G, αIG, βIG, x0IG, ω are defined in (4.35), (4.32)
and (4.37).

Proof. The detailed description of the approximation techniques is given in
Section 4.1.4. Therefore (ii) and (iii) follow directly from the definition of the
approximations. The result presented in (i) easily follows from (4.39). �

4.3 Value at Risk of the aggregated claim amount
The last quantity which will be investigated is the V aR of the aggregated claim
amount. V aR is a quite popular risk measure in the financial world. For given
p, the V aR is defined as V aR = s = F−1

S (p), where FS(s) = P (S ≤ s) and
therefore it can be presented as an upper limit for the aggregated claim given some
probability (risk) value. As was already mentioned, three calculation methods of
V aR will be discussed in this section.

Remark 4.3. The method of hybrid simulation is not applicable here in the
form it was presented in Sections 4.1.3 and 4.2.3. The calculation of V aR does
not involve the calculation of an expectation. Therefore, direct application of
the law of total expectation does not help here. Nevertheless, the idea of the
method can still be used in a slightly modified form. By conditioning on W = w,
the distribution of S takes a quite simple form in case the distribution of C is
closed under convolution. Or, if it is not, we can approximate the distribution
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of S by some suitable distribution, like it was done in Sections 4.1.3 and 4.2.3.
Note that the Normal and Edgeworth approximations are not the only ones which
can be used in the method. In general, any reasonable approximation (including
the approximations which are described in Section 4.1.4) can be easily applied
here. In case the approximation applied is closed under convolution (Normal or
IG), the distribution of S takes the form of that approximation and S becomes
a simple random variable. Hence in both cases, whether the approximation was
used or not, we do not have to simulate the whole sequence W,C1, C2, . . ., which
will significantly improve the simulation speed. However, this method was not
tested on the V aR and is not used in our research. �

4.3.1 Convolutions
From a first glance, a very straightforward way to get the V aR seems to be the
convolution method. The aggregated claim S is given by (4.1) with W defined in
(4.2). This gives us the opportunity to write FS(s) as

FS(s) =
∞∑
w=1

P (W = w)F ∗wC (s), (4.57)

where F ∗wC stands for the w-fold convolution of the distribution FC . In case the
distribution of C is closed under convolution it is possible to get the closed form
expression for F ∗wC (s). However, our calculation target now is the V aR, which
can be presented as the solution (w.r.t. s) of

∞∑
w=1

P (W = w)F ∗wC (s) = p, (4.58)

with the given risk level p. The probability P (W = w) itself has a quite compli-
cated structure (see Section 4.1.1). Therefore, there is practically no possibility
to obtain the analytical solution for this problem. The numerical approach is also
not a good idea since the iteration procedure will take too much time. Therefore,
the general suggestion is not to use the convolution techniques in the calculation
of V aR.

4.3.2 Direct Monte-Carlo Simulations
The second calculation method we would like to discuss is the direct Monte-
Carlo simulation. This method does not have any limitations and the accuracy
of the result depends only on the number of simulations and the random number
generator. The idea is simple. Having the number of simulations NS and the risk
level p as an input, we simulate S NS times according to the chosen parameters of
Model 4 (see Table 3.8). As a result we obtain the sequence S1, S2, . . . , SNS . The
next step is to order that sequence in order to get S(1) ≤ S(2) ≤ . . . ≤ S(NS) with
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the minimum value S(1) and the maximum value S(NS). Under such a setup, the
simulated V aR can be found as the [NS × p]-th member of the ordered sequence
(square brackets are introduced here as the rounding operator). In other words
S([NS×p]) will be the simulated V aR of the given risk level p.

To get the confidence interval it is necessary to reorganize the calculation
algorithm. Having the total number of simulations NS , we divide it into T parts,
NS1 , NS2 , . . . , NST , clearly with the property

∑T
i=1NSi = NS . Next, we generate

the matrix 
S11 S12 . . . S1NS1

S21 S22 . . . S2NS2

. . . . . . . . . . . .
ST1 ST2 . . . STNST

 ,

according to the chosen parameters of Model 4. Each row of the matrix we order
in ascending order to get the matrix of the form

S(11) ≤ S(12) ≤ . . . ≤ S(1NS1 )

S(21) ≤ S(22) ≤ . . . ≤ S(2NS2 )

. . . . . . . . . . . . . . . . . . . . .
S(T1) ≤ S(T2) ≤ . . . ≤ S(TNST )

 .

Having the risk level p, we are interested in the vector

(S(1[NS1×p]), S(2[NS2×p]), . . . , S(T [NST×p])) = (V1, V2, . . . , VT ),

which can be presented as a realization of a random variable V . The simulated
value at risk in that case will be the sample mean

V =
1
T

T∑
i=1

Vi.

When the number of simulations is large, the value of E[V ] will be close to F−1
S (p)

and therefore we use it as an approximation of the V aR. As soon as we consider
E[V ] as the calculation target, we can use the theory of confidence intervals which
was presented earlier in this chapter. As a result we get the confidence interval
for the V aR of the aggregated claim amount as[

V −
Φ−1

(
1− α

2

)
SV√

T
, V +

Φ−1
(
1− α

2

)
SV√

T

]
, (4.59)

where SV is defined as

SV =

√√√√ 1
T − 1

T∑
i=1

(Vi − V )2 =

√√√√ 1
T − 1

T∑
i=1

V 2
i −

T

T − 1
(V )2.
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Remark 4.4. Just like in the case of the standard deviation (see Remark 4.2)
there is an alternative method to obtain the confidence interval for V aR. The
alternative approach is to utilize the asymptotic normality of the sample quantile.
Denote by ξp the p-quantile and by ξ̂pn the sample p-quantile. Then, knowing
that

ξ̂pn ∼ AN
(
ξp,

p(p− 1)
f2(ξp)NS

)
,

we directly obtain
(ξ̂pn − ξp)f(ξp)

√
NS√

p(p− 1)
∼ AN (0, 1)

and the confidence interval for the V aR takes the form[
ξ̂pn −

Φ−1
(
1− α

2

)√
p(p− 1)

f(ξp)
√
NS

, ξ̂pn +
Φ−1

(
1− α

2

)√
p(p− 1)

f(ξp)
√
NS

]
.

In practice the quantile ξp and the value of f(ξp) have to be replaced by their
estimates. Again, asymptotic normality continues to hold in case of consistent
estimation. It is natural to take the sample quantile as an estimate of ξp and the
density f can be replaced by some approximation, e.g. the kernel estimate. �

4.3.3 Approximations
One more calculation method of V aR described here is approximation. All the
approximations which are utilized in the present thesis are described in Section
4.1.4. However, only the IG approximation will be used in the calculation of
V aR. The IG approximation combines two essential features: relative simplicity
and relative accuracy (for the accuracy testing see Chapter 5). The alternative
approximations are Gamma and Gamma-IG. The Gamma approximation has a
quite simple form, but it is not sufficiently accurate for the approximation of
the tail of the distribution of S. The Gamma-IG is accurate but it has a very
complicated form which is not suitable for further analysis.

As was described in Section 4.1.4, the approximation of FS(s) is obtained by
matching the mean, variance and skewness of S with the mean, variance and
skewness of the IG random variable (see (4.32)). As a result we obtain FIG(s)
with the parameters given by (4.32) as approximation of FS(s). For given risk
level p, the approximation of V aR is defined as F−1

IG (p), which is obtained by
solving

FIG(s)− p = 0

w.r.t. s. It would be a quite complicated task to solve such an equation analyti-
cally. Fortunately, we do not need it. All the further analysis will require only the
single values of V aR when all the underlying parameters are given. Therefore, we
define V aR as a given function F−1

IG (p) (analogically as the definition of the in-
verse of the standard normal distribution Φ−1(p)) and use mathematical software
(like MAPLE) to obtain the numerical results.



Chapter 5

Accuracy of approximations

The essential target of interest for most insurance (or reinsurance) companies
is the aggregated claim amount S during some reference period, let us say one
year. It is clear that nobody knows what will be the total claim amount at the
end of the next year. Therefore S should be modeled by some random variable
or, what is more natural, by the sum of random variables which can represent
different claim sizes. Different techniques of classical modeling were described in
Section 1.1. The more advanced modelling which is used in the present thesis was
introduced and described in Chapter 3.

Having a model for S, it is very important to determine its distribution. By
using this distribution it is possible to calculate different types of premiums, price
contracts and to evaluate and control insurance portfolios. Unfortunately the
distribution of S usually has a very complicated structure and often can not be
written in a closed form expression. Monte-Carlo simulation can be the solution,
but it is a time-consuming method and does not easily reveal the properties of the
distribution of S under different circumstances. That is why it is very important
to have good approximation methods, which can be applied to get approximations
for different insurance products and risk measures. The topic of the importance
of approximations was also covered in Section 1.5.

The goal of this chapter is to determine good approximations (and the best
among them) for the distribution of the aggregated claim amount S assuming the
overdispersion model which was presented in Chapter 3 (see Model 4 in Table
3.1). Similar work was performed in Reijnen et al. [2005], where five approx-
imations (Normal power, Edgeworth expansions, Gamma, IG and Gamma-IG)
were tested in detail, assuming different models for S and different underlying
distributions. As a result, a relatively simple rule of thumb, which specifies the
best approximation for a given range of parameters, was constructed. Here we
will try to follow the same strategy and come up with a similar rule of thumb,
which will serve as an approximation guide when Model 4 is applied. Using the
conclusions of Reijnen et al. [2005], the most useful approximations are the IG
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and the Gamma-IG in the sense that they showed the best results when Models 2
or 3 (see Table 3.1) were assumed. For this reason only these two approximations
will be considered as candidates for the approximations of the distribution of S
when Model 4 is assumed.

In Reijnen et al. [2005] the whole analysis was based on the SLP , which is
indeed a good tool as soon as we are interested in the tail of the distribution.
In this chapter, besides the SLP , two more quantities will be considered: the
variance of the Stop-Loss contract and the V aR, which is often used as a risk
measure. These two quantities often play an important role in the premium
calculation, evaluation and control of the insurance portfolio. Therefore, we have
to be sure that our approximations can still be applied for the calculation of these
quantities. The chapter is based on the technical report of Lukocius et al. [2007].

5.1 Retention level and criterion

In Chapter 3 the values of the model parameters which form the region of interest
were introduced (see Table 3.7). In order to simplify the analysis, a number
of representative values was presented for the region of interest, for each of the
parameters considered (see Table 3.8). Therefore, all the testing procedures will
be based on Table 3.8 and the conclusions will be given for the entire region of
interest.

Nevertheless, there are two quantities which still have to be chosen. These are
not the parameters of the model but belonging to the risk measures considered.
Therefore, they were not defined in Section 3.4. The first one is the retention
level a which appears in the SLP and the variance of the Stop-Loss contract.
The second one is the risk level p in the definition of V aR.

It is hard to define the region of interest for the retention level in an abso-
lute sense. Different parameters of the model change the calculation scale and
the region of interest defined by the absolute retention level has to be changed
according to that scale. Therefore, we will use the approach which was used in
Reijnen [2003] and Reijnen et al. [2005]. The retention level was introduced there
as a linear combination of µS1 and σS1 by

a = µS1 + kσS1 .

Using such a definition we, instead of varying a directly, consider different values
of k which fall in the interval [1, 3] and in this way we avoid the scale problem.
Here we denote by S1 the aggregated sum of Model 1 (see Table 3.1). Therefore,
the region of interest for the retention level a is given by the values of k ∈ [1, 3],
with as representative values 1, 2, 3. Do note that the scaling of a is based on
Model 1, regardless of the actual model we are considering. This is necessary to
allow meaningful comparison among the models: if different a’s would be used
(e.g. a = µS4 + kσS4 as well), the comparison would became severely biased.
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In contrast with the retention level, the risk level p can be defined in an
absolute sense, without an intermediate step. Since we are interested in the tail
of the distribution of S, the probabilities 0.9, 0.95, 0.99, 0.9975 and 0.9995 are
proposed as representative values for the region of interest 0.9 ≤ p ≤ 0.9995.

All decisions about the accuracy of the approximations will be based on a
criterion which appeared for the first time in Reijnen [2003]. It was used later in
Reijnen et al. [2005] in order to determine not so much the best approximation
among the ones considered (as these can all be bad), but good ones. The idea
here is to compare the approximations not merely to each other, but to check
also whether or not the approximations satisfy a given absolute criterion. In this
way, we can distinguish for example the following two, quite different scenarios.
In the first, the winner may outperform its competitors, but nevertheless still be
unsatisfactory in the sense that the criterion is not met. No acceptable solution
exists here. In the second scenario the winner as well outperforms the competition,
but now all the methods satisfy the absolute criterion. Hence we have at best a
luxury problem here: several suitable solutions exist.

Since all the approximations match only a few moments of the distribution of
S, it is obvious that the accuracy of the approximations depends on the retention
level a (in case the SLP or the variance of the Stop-Loss contract is approxi-
mated) or the risk level p (in case the approximation target is the V aR). The
larger the values of a or p, the farther we go into the tail of the distribution
(where presumably matching of the moments has less influence on the behavior)
and the relative difference between the approximated and the exact distribution
will become larger as well. This also results in a larger relative error in the ap-
proximated SLP , variance of the Stop-Loss contract and V aR. Therefore Reijnen
et al. [2005] chose a criterion which becomes more liberal when a increases. It was
chosen in such a way that the absolute value of the relative error has to be smaller
than 2.5% for k = 0, smaller than 30% for k = 3 and proportionally in between
when the true SLP can be calculated by using the convolution method. In case
the approximated SLP s have to be compared with simulations, the criterion was
chosen as 5% at k = 0 and 60% at k = 3. At first sight it may seem quite liberal
to allow such large relative errors like 60%. Nevertheless, in Albers [1999] was
already demonstrated that ignoring small dependencies can cause errors of e.g.
500%. Therefore in comparison, the criterion introduced still makes sense.

In the present thesis the criterion is chosen in a similar way. The linear
criterion function starting at 2.5% for k = 0 (hence allowing 11.7% at k = 1) and
giving 30% at k = 3 is defined by

CSLP (k) = 0.3
k

3
+
(

1− k

3

)
0.025. (5.1)

Note that we use the same criterion in both cases: when the SLP or the variance
of the Stop-Loss contract can be calculated by using the convolution method and
when these quantities have to be simulated. The reason for that is hidden in
the simulation process where (as was explained in Sections 4.1.2 and 4.2.2) the
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accuracy of the simulated values is controlled more carefully compared to Reijnen
et al. [2005] where a fixed number of simulations (100000) was used in all the
cases considered. The criterion for the value at risk CV aR(p) is introduced in a
similar way as

CV aR(p) =
(p− 0.5)0.3

0.4995
+
(

1− p− 0.5
0.4995

)
0.025, (5.2)

giving 2.5% at the 0.5 quantile (hence allowing 25% at p = 0.9) and 30% at the
0.9995 quantile.

Remark 5.1. Note that from a first glance it seems rather strange to use the
same criterion for SLP , variance of the Stop-Loss contract and V aR. The crite-
rion becomes milder in the tail, which is a natural assumption for SLP since the
absolute values become smaller and hence not practically significant. The situa-
tion with the variance and V aR is different. The values of these quantities do not
decrease with k and p. Moreover, it is obvious that V aR is strictly increasing with
p. However, the criterion is constructed in view of the behavior of the dependence
effect which becomes very huge in the tail. Therefore, our choice, which gives us
more freedom from the approximation point of view, still makes sense. �

Next follows the description of the accuracy testing process. For each situation
from Table 3.8 the approximated value, which is denoted by X, will be compared
with the true value, which is denoted by T . Then, the relative error

|X − T |
T

will be compared with the criterion at the calculation point. We say that the
approximation satisfies the criterion at the given point if the relative error is less
or equal than the criterion at that point. The convolutions are going to play the
role of true values in cases 21, 22, 31 and 32 (see Table 3.8). In cases 11 and 12
the approximations will be compared with the simulated values. The simulation
process requires more explanation because of the confidence interval approach
which defines the accuracy of the simulations.

For each simulated value a 95% confidence interval will be constructed and
its length will be based on the criterion at that point. Hence, we do not define
the length of the confidence interval in an absolute sense. One of the reasons for
that is the calculation scale, which heavily depends on the underlying parameters
of the model. The situation is similar the definition of to that of the retention
level, which was presented and motivated earlier in this section. Another reason
is hidden in the definition of the criterion. It is obvious that the accuracy of
the simulated value at the fixed point has to be in line with the criterion at the
same point. In other words, if at some point the criterion is strict, the simulated
value, which plays the role of the true value, has to be sufficiently accurate as
well. In practice we replace the true value T by X, which is the center of the
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confidence interval, and the relative error of such a replacement should not be
large, compared to the criterion at that point. First consider the SLP and the
variance of the Stop-Loss contract.

According to the definition above, the approximated value X satisfies the
criterion if

X(1− CSLP (k)) ≤ X ≤ X(1 + CSLP (k)).

The confidence interval is defined as, cf. Section 4.1.2,

X(1− θCSLP (k)) ≤ T ≤ X(1 + θCSLP (k)).

Hence, we can make X as close to T as we want by decreasing the value of θ
which obviously depends on the number of simulations. We are interested in

|X − T |
T

≤ (1 + θ)CSLP (k)
1− θCSLP (k)

and we want to have (1 + θ)CSLP (k)/{1 − θCSLP (k)} as close to CSLP (k) as
possible. It is clear that equality can be achieved only when θ = 0, which is
possible only for an infinite number of simulations. This means that we can not
eliminate the error of the replacement, but we can control it. Let us say that we
are satisfied if the error of the replacement is not more than 0.5% at k = 0, not
more than 5% at k = 3, and proportional in between (hence 2% at k = 1). To
achieve this, we introduce

ESLP (k) =
k

3
0.05 +

(
1− k

3

)
0.005

and define
(1 + θ)CSLP (k)
1− θCSLP (k)

= CSLP (k) + ESLP (k),

which defines θ (which is actually a function of k) as

θ(k) =
ESLP (k)

CSLP (k){1 + CSLP (k) + ESLP (k)}
.

Hence, for each value of k, the length of the confidence interval has to be at most

2XESLP (k)
1 + CSLP (k) + ESLP (k)

to achieve the precision prescribed above. As was mentioned before, see Section
4.1.2, in practice the length of the confidence interval is not known in advance
since X and SX is defined during the simulation process. Therefore, some pilot
study has to be performed before starting the main simulation procedure. The
proposal is to perform 10000 simulations to get a first approximation of X and
SX , and then to continue simulating step by step (let say by 100 simulations,
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updating X and SX) until the needed accuracy (which is defined by the length of
the confidence interval) is reached.

We act in a similar way when the calculation target is V aR. The auxiliary
error function EV aR(p) is defined as

EV aR(k) =
(p− 0.5)

0.49
0.05 +

(
1− p− 0.5

0.49

)
0.005

and for given value of p the length of the confidence interval has to be not larger
than

2XEV aR(p)
1 + CV aR(p) + EV aR(p)

to satisfy the condition of the replacement error. Note that here X obviously
denotes the center of the confidence interval of V aR.

5.2 Testing

We start with testing of the accuracy of the approximations in the case where
the net Stop-Loss premium is the calculation target. For each situation from
Table 3.8 the approximated value will be compared with the true value on the
basis of criterion (5.1). We are interested in the parameter range in which the
approximations (or at least one approximation) work well. The result will be
presented as the rule of thumb for Model 4.

As a starting point we take the rule of thumb which was presented in Reijnen
et al. [2005]. This rule has the form

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 ⇒ Gamma-IG approximation
5 < κ3C < 15 or 1.5 < κ4S < 50 ⇒ IG approximation

(5.3)

and was originally presented for the model described in (1.6). Its close analogue
can be found in Table 3.1 as Model 2. Here κ3C denotes the skewness of the
claim size and κ4S denotes the kurtosis of the aggregate sum S. One of the main
conclusions of Reijnen et al. [2005] was the importance of these two quantities.
It was shown that they have a major influence on the risk measures (which are
calculated using the model) and hence to the accuracy of the approximations.
Therefore, it is interesting to know whether the rule still works for Model 4.
To see this, Table 5.1 was constructed. All the situations from Table 3.8 are
divided into two parts according to the equations from (5.3). Then, the relative
approximation error is calculated and compared with the criterion. The numbers
in the table show the numbers of situations where the relative approximation
error satisfies the criterion and the number in brackets shows the total number
of situations involved. The "Total" column tells in how many situations at least
one approximation satisfies the criterion.
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Assumption 11 Satisfy the criterion
L ∼ Gamma, C ∼ Lognormal Total IG G-IG
0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 12(12) 11(12) 12(12)
5 < κ3C < 15 or 1.5 < κ4S < 50 24(24) 19(24) 23(24)

Assumption 12 Satisfy the criterion
L ∼ IG, C ∼ Lognormal Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 9(9) 7(9) 9(9)
5 < κ3C < 15 or 1.5 < κ4S < 50 51(60) 24(60) 47(60)

Assumption 21 Satisfy the criterion
L ∼ Gamma, C ∼ IG Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 9(9) 8(9) 9(9)

Assumption 22 Satisfy the criterion
L ∼ IG, C ∼ IG Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 40(42) 20(42) 39(42)

Assumption 31 Satisfy the criterion
L ∼ Gamma, C ∼ Gamma Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 9(9) 8(9) 9(9)

Assumption 32 Satisfy the criterion
L ∼ IG, C ∼ Gamma Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 40(42) 20(42) 39(42)

Table 5.1: Results of the accuracy testing when the net Stop-Loss premium is the
approximation target.

The first conclusion which can be drawn from the table is that we should not
use the rule of thumb of Model 2 for Model 4. According to the rule (5.3) we
have to switch to the IG approximation as soon as 1.5 < κ4S < 50, but Table 5.1
clearly shows that the Gamma-IG approximation is better (more often satisfies
the criterion) than the IG one in all the situations considered.

The general advice will be to use the Gamma-IG approximation when dealing
with the SLP calculation in the region of interest (which is expressed in terms of
the distributional assumptions considered as defined in Table 3.2 and the values
of the underlying parameters as defined in Table 3.7). In view of this result, a
couple of interesting remarks can be made. These remarks can be presented as
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answers to questions like ’Why do the approximations work well even for large
cumulants when Model 4 is assumed?’ or ’Why do large kurtosis values not harm
the Gamma-IG approximation?’ In the first place it should be noted that we
consider a restricted region in the parameter space. In particular, as has been
explained in Section 3.4, λ is larger than in Reijnen et al. [2005], and this means
that we have more observations. Furthermore, the range of a is from µS1 to
µS1 + 3σS1 . If we compare σS1 and σS4 , it is seen that σS1 is much smaller than
σS4 and hence we are not that far in the tail of S4. In general, when considering
relative error, approximations work better for the central part than in the tail.

Assumption 11 Satisfy the criterion
L ∼ Gamma, C ∼ Lognormal Total IG G-IG
0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 12(12) 12(12) 12(12)
5 < κ3C < 15 or 1.5 < κ4S < 50 24(24) 24(24) 24(24)

Assumption 12 Satisfy the criterion
L ∼ IG, C ∼ Lognormal Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 9(9) 9(9) 9(9)
5 < κ3C < 15 or 1.5 < κ4S < 50 60(60) 59(60) 60(60)

Assumption 21 Satisfy the criterion
L ∼ Gamma, C ∼ IG Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 9(9) 9(9) 9(9)

Assumption 22 Satisfy the criterion
L ∼ IG, C ∼ IG Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 26(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 42(42) 42(42) 39(42)

Assumption 31 Satisfy the criterion
L ∼ Gamma, C ∼ Gamma Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 27(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 9(9) 9(9) 9(9)

Assumption 32 Satisfy the criterion
L ∼ IG, C ∼ Gamma Total IG G-IG

0 ≤ κ3C ≤ 5 and 0 ≤ κ4S ≤ 1.5 27(27) 26(27) 27(27)
5 < κ3C < 15 or 1.5 < κ4S < 50 42(42) 40(42) 41(42)

Table 5.2: Results of the accuracy testing when the variance of the Stop-Loss
contract is the approximation target.
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The next step concerns the testing of the calculation accuracy for the variance
of the Stop-Loss contract. Just as in the SLP case, the whole analysis will be
based on the parameter values from Table 3.8 and the conclusion will be given
for the region of interest from Table 3.7. The structure of the testing procedure
is the same as well. Under the assumptions 21, 22, 31, 32, the convolution results
will play the role of the true values and under the assumptions 11 and 12, the
’true’ values will be simulated. The confidence interval approach stays the same
as for the SLP which was discussed in Section 5.1.Table 5.2, just like Table 5.1,
is based on the rule of thumb for Model 2 (see (5.3)). Moreover, the conclusion
which we draw from Table 5.2 is completely in line with the conclusions for the
SLP under Model 4. This means that the general advice for the approximation of
the variance is the Gamma-IG approximation. But we have to admit that the IG
approximation is almost as good as the Gamma-IG one when the variance of the
Stop-Loss contract is the calculation target. Therefore, the rule of thumb (5.3) is
technically applicable here, but it can be simplified to one line and we will do it.

Like was mentioned in the previous chapter, only the IG approximation is
used in the present thesis for the calculation of V aR. Therefore, we only have
to check whether this approximation is reliable in the region of interest which
is considered here. Consequently, Figure 5.1 presents approximation results only
for the IG case. The scaling on the x-axis organized as follows: the quantiles
between the numbers which are shown always corresponds to the left number.
For instance the quantiles between 0.9 and 0.95 are equal to 0.9. The upper part
of the figure presents the relative errors under the situations 11, 21 and 31. It
can be seen that in all the cases the relative error satisfies the chosen criterion.
This is a nice result, which is in line with our requirements. The lower part of the
figure contains the relative errors of the 12, 22 and 32 situations. Here we have
a bit larger relative errors, but all of them satisfies the chosen criterion too. The
large errors correspond to the very extreme cases where the dependence effect is
expected to be huge. Therefore, the conclusion can be that the IG approximation
is sufficiently accurate and thus can be used in the Value at Risk calculation.

centering

ε ≤ 0.05
C ∼ Lognormal or IG or Gamma 0.05 ≤ γC ≤ 2

+ λ ≥ 400
L ∼ IG or Gamma 5 ≤ µG ≤ 20

γL ≤ 1.5 for L ∼ Gamma
⇓ γL ≤ 2.5 for L ∼ IG

SLP approximation ⇒ Gamma-IG
variance of the Stop-Loss
contract approximation ⇒ Gamma-IG

V aR approximation ⇒ IG

Table 5.3: The rule of thumb for Model 4.
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As a conclusion of this section we are going to present the rule of thumb for
Model 4. The general suggestion would be to use the Gamma-IG approximation
for the SLP and the variance of the Stop-Loss contract approximation and the
IG approximation for the V aR approximation when the aggregated sum is mod-
elled by Model 4. This rule is valid in the limited region of the parameters of
interest which is presented in Table 3.7 and restricted to the distributions under
consideration which are presented in Table 3.2. The schematic overview of the
rule of thumb for Model 4 is presented in Table 5.3.
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Figure 5.1: Relative errors of the Value at Risk using the Inverse Gaussian ap-
proximation



Chapter 6

Dependence Effect

In this chapter we present an explicit example of the dependence effect. The
example concerns a concrete line of the insurance business, the so-called workers
compensation insurance. The underlying data of this branch of insurance perfectly
fit our model (dependence structure is present) and, moreover, it was suggested
by the users committee of our STW-project as a potential source of problems
due to dependence. However, the needed structure is not present in the available
data. Therefore, it will serve only as a basis for the construction of the data
set needed. Hence, real data will not be used in this chapter, but compared to
Chapter 2 (where the dependence problem was invented by ourselves and all data
were simulated) here we go a step further, since real data are the starting point.
This contributes to the reality aspect of the example.

Before considering the real data, it is useful to know which data we need to
implement Model 4 (or Model 2 or 3). Section 6.1 is focused on this aspect. Several
examples of the data will give a feeling about the structure and content of the data
which we need for the model setup. Next follows the section which gives some
information about the workers compensation insurance in general. We do not
present any specific information about the Dutch workers compensation structure,
but we give the idea and the basic information which should hold for all countries.
Section 6.2 considers the real data which we got from Bert Teeuwen, one of the
members of the users committee. Here we explain why these data cannot be used
directly for our purposes and give an example of the extended data which would
satisfy all the requirements. The last part of the chapter is the analysis of two
scenarios. The first scenario assumes that the dependence is completely ignored
and the second scenario deals with different levels of dependence. The chapter is
closed by presenting the conclusions about the potentially serious consequences
of the fact that the dependence was ignored.
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6.1 The data we need
In this section we discuss the type of the data which we need for the application
of Model 4 (and actually Models 2 and 3 as well). We start with the summary of
all the parameters of the model which have to be estimated from the data. We
do not present any estimation algorithms here. This aspect will be covered in
Chapter 7. In this chapter we (for simplicity) assume that the estimates are given
and the estimation effect can be ignored. Model 4 has the form

S =
N∑
i=1

Ci +
H∑
k=1

Gk∑
j=1

Cjk,

where N ∼ P (λ(1 − ε)), H ∼ P (ελ/µG), Gk ∼ P (Lk) for all k = 1, 2, . . .. More-
over, we assume that L ∼ Gamma(αL, βL)( or IG(αL, βL)) and C ∼ Lognormal
(αC , βC) (or IG(αC , βC), or Gamma(αC , βC)).

All parameters which have to be estimated from the data are summarized in
Table 6.1.

Parameter Explanation
αC First parameter of the claim amount distribution
βC Second parameter of the claim amount distribution
λ Total expected number of claims
ε Expected percentage of the special claims
αL First parameter of the expected group size distribution
βL Second parameter of the expected group size distribution

Table 6.1: Summary of the model parameters

Note that parameters αL, βL can be replaced by αG, βG. In practice the
parametrization with αG, βG or µG, γG maybe preferred, but in this chapter it
is not important which parametrization is used. All general conclusions hold for
both parametrizations. The next chapter will cover this aspect in more detail.

These are all the parameters we need to setup Model 4. To get a better feeling
about the data which we need for the model implementation, we present a brief
discussion about the parameters. For more information see Section 3.3. We start
with the "easiest" ones. The category of the "easiest" parameters considered here
consists of λ and the pair {αC , βC}. Parameter λ is just the expected number of all
claims. To get its estimate we do not need any information about the dependence
(groups) structure. The same situation holds for the pair {αC , βC}. These are
the parameters of the claim amount distribution and while we assume that all
the claims ("special" and "simple") follow the same distribution, it is quite easy
to estimate them as well (because we do not need any information about the
dependence either). The most difficult part is the estimation of ε and {αL, βL}.
For the estimation of such parameters the data has to include information about
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the dependence groups. If such information is not directly included, it has to be
possible to derive it from available extra information about the data. Therefore,
it is very important to have data with information on the level of individuals. If
the data are aggregated, they are not flexible anymore and we cannot obtain any
information about the dependence structure.

To get a better feeling about the requirements for the data, we present several
examples of data sets. The first example is the "perfect" data set, where all the
necessary information is included (see Table 6.2). It is "perfect" in the sense that

Claim amount Group code
75 0
40 0
5 1
9 1
92 1
44 0
50 0
27 0
88 2
42 2
68 0
26 3
27 3
27 3
96 3
35 0
. . . . . .
85 0
92 43
12 43

Table 6.2: Example of the "Perfect" data set

we directly have all the information about the groups and the claim amounts. By
using the "Group code" field we can get all the information about the groups:
the number of groups and the group sizes during the reference period. As can
be easily understood, 0 in the table denotes an individual claim and the numbers
1, 2, . . . define different groups of dependence. In this example there are 43 groups
with sizes 3, 2, 4, . . . , 2, respectively. It is easily seen that we have everything in
order to start the estimation procedure.

The main problem is that usually a field "Group code" is not available in
the data set. In that case it should be possible to create this type of field from
the existing data and available extra information about the data. We present
an example of such a possibility. In Table 6.3 the "Group code" field is created
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from the "Date", "Incident" and "Place" fields (in general, it can be a much more
complicated structure). Individual claims are denoted by 0, as in the previous
example. In case several accidents of the same type happened at the same date
and at the same place, we assume that they form one dependence group. If,
for example, in some laboratory there was an explosion on June 21, the people
which have received compensation for this accident, are in the same group. But
this does not mean that all of them have the same type of claim. These people
could suffer completely different injuries. One of them could get a light shock and
another a serious injury with need for rehabilitation (hence, it is quite natural
to assume independence between the claim sizes inside the groups). This also
does not mean that all of them are from the same occupation class. Probably in
most situations this is the case, but this assumption has to be strictly motivated.
Because of this, the workers compensation data which we got from Bert Teeuwen
cannot be applied directly for the estimation of the parameters. The aggregation
there is on a yearly basis for the different risk classes. Even if the total groups
would belong to the same occupation classes, there is a yearly aggregation, which
hides the information about the number of groups and the group sizes. Therefore,
the fields "Claim type" and "Risk class" cannot be used for the creation of the
"Group code" field. As an example consider claims 18, 19, 20. It is seen that
claims 19 and 20 belong to one group and this group belongs to the occupation
class r3. Claim 18 also belongs to the same occupation class, but it cannot be in
the same group since the incident and place of the incident are different. Hence,
if we make the aggregation on the risk class we lose information about the groups
of dependence.

6.1.1 Workers compensation insurance

This section gives a general overview of the workers compensation insurance.
The main idea can be easily understood from the name. Each company which
employs people has to compensate their health injuries in case these occurred at
the working place. This procedure usually goes through an insurance company
which, instead of the company itself, covers the underlying risk (or part of it).
Naturally, the insurance company requires a premium for the coverage of the
risk. The premium is calculated by using rates which obviously depend on the
nature of the business. Different types of businesses usually are classified by
different classification codes. Each (or a combination of) classification code(s)
corresponds to some risk class which can be understood as a risk level of the
business considered.

Risk is determined by two factors: the frequency of on-the-job injury and the
severity of injury. Severity is measured by both medical payments and indemnity
benefits (payments made directly to the injured employee to compensate for losses
suffered as a result of an accident). For example, roofers have the highest risk
level, and office clerks have the lowest. Obviously the risks of a roofer are much
different and quite a bit higher than those of an office clerk. Therefore, workers
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compensation rates are much higher for roofing companies than for administrative
companies.

As was already mentioned, the workers compensation insurance provides a
good basis for the illustration of the dependence effect. As an example we can
consider some construction company which buys workers compensation insurance
service. Quite often, employees of the construction company work in groups and
one accident can effect more than one member of the group. This is a classical
example of the dependence we consider in the present research. In real life the
dependencies can have a more complicated structure, but the main idea stays the
same: several claims can arise at once.

Consequently, the main idea of the workers compensation insurance is quite
simple. The total population is divided into risk classes according to some features
which probably are different for different countries and/or insurance companies.
Then, the rates are assigned to each risk class and the premium is calculated by
multiplying the total annual payroll for each risk class by the rate. The most
important things for us are the fact that the premium has to be assigned to each
risk class separately and that separate risk classes are formed from a quite large
number of companies (for example the risk class "Restaurants" can include up to
1000 units). This information should be sufficient for our purposes.

6.2 Workers compensation data
Consider some large insurance company which offers workers compensation insur-
ance. Assume that the company has a quite large portfolio with a large amount
of the risk classes involved. For each risk class the company determines the rate
which is used in the calculation of the premium. Suppose that the company is
interested in purchasing the reinsurance contract (assume that it is a Stop-Loss
reinsurance) for its huge portfolio (or for a part of it). Assume that we are the
company which is willing to sell such a contract, i.e. we are ready to cover the
part of the risk of the insurance company which is above some retention level a.
For the description of the Stop-Loss contract we refer to Section 1.4.

Remark 6.1. It was mentioned before that this chapter can be considered as an
explicit and realistic example. To make the exposition as expressive as possible
we present the analysis from a personal point of view. In other words, as was
just mentioned, we imagine ourselves as reinsurer and the data considered in this
chapter will be looked upon as coming from the insurance company which is going
to conclude the reinsurance contract with us. �

The natural and most important task for us (as the reinsurer) is to analyze
and price the reinsurance contract. To calculate the Stop-Loss premium we need
the workers compensation historical data from the company. In this section we
consider the workers compensation data which we obtained through the users
committee and which plays the role of data we (as the reinsurer) got from the
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insurance company. A part of these data can be found in Table 6.4. Inspection of

Risk class Year Payroll Loss
1 1 21798086 538707
1 2 22640528 439184
1 3 22572010 1059775
1 4 24789710 560013
1 5 25876764 1004997
1 6 28033613 1097314
1 7 22525887 609833
2 1 12004031 270222
2 2 12713178 229566
2 3 13596610 596850
2 4 14811727 196539
2 5 12774073 134248
2 6 20245789 489312
2 7 24242468 418218
3 1 50216515 769208
3 2 56099793 649707
3 3 58109747 503919
3 4 67807105 675466
3 5 73852437 545745
3 6 84208474 1562266
3 7 83604216 931762

Table 6.4: Part of the workers compensation data

the data set learns that the portfolio of the underlying insurance company consists
of 124 risk classes (Table 6.4 presents only 3 of them) and the premium has to be
assigned for each of them. Examples of risk classes are restaurants, construction
industry, transportation, etc.

For simplicity we consider only one risk class for which the Stop-Loss premium
has to be assigned. For the remaining classes the procedure is similar. Possible
differences can be ascribed to the specific features of the class considered. Let us
consider class number 2 and assume that this is the construction industry (note
that here starts the artificial part since we do not have any information on how
the risk classes are organized in general and whether the risk class ’construction
industry’ exists at all). For class 2 (just as for the other classes), we have 7 years
of historical data, which is illustrated in Table 6.4. From a first glance it is clear
that the data do not contain all the information we need for the model setup.
There even is no exact information about the total number of claims per year.
There is no information about the total claim amount either. Only the total loss
is available, which probably equals TotalClaimAmount − TotalPremium. It is
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not hard to guess that the data we have is the highest aggregation level of the
company’s database. However, to price the contract and to perform a reasonable
analysis we need the whole database. That is why we are going to expand the
data to a complete database structure. The expansion will be based on Table 6.3.
The main goal is to obtain data which allow the estimation of the parameters of
Model 4.

We decided to consider only one risk class, hence the information takes the
form of Table 6.5.

Risk class Year Payroll Loss
2 1 12004031 270222
2 2 12713178 229566
2 3 13596610 596850
2 4 14811727 196539
2 5 12774073 134248
2 6 20245789 489312
2 7 24242468 418218

Table 6.5: Information for risk class 2.

It was decided to consider construction industry as a representative example
of the risk class number 2. Let us say that in the company’s portfolio there
are 100 construction companies, which together form the risk class 2. The next
information level should contain information about each company for all the years
considered. We also need the number of claims and the claim amounts. So,
this table should also include this information (let us say the total number of
claims and the total claim amounts per company for each year). The payrolls
and losses for each company can be presented as well. Next follows the lowest
information level table which contains the information about the individual claim
amounts, claim types, places, etc. It should look similar to Table 6.3, where all
the information needed is present. Figure 6.1 presents the possible structure of
such a database.

The three tables in Figure 6.1 are connected by the keys used to one single
database. It is not hard to guess that the key 2.1.N1 means the second risk class,
the first year and the first company. The remaining notations are similar. For
example, p.N1.1 defines the payroll of the first company of the second class. It
is also clear that

∑100
i=1 p.Ni.1 = 12004031 and

∑100
i=1 l.Ni.3 = 596850. Unfortu-

nately, the total number of claims, as well as the total claim amount, cannot be
connected to the first table (since we simply do not have detailed information
about these quantities). As it can be seen, the Payroll and Loss fields are not
used directly in this chapter. We keep them for the illustration of the connec-
tion between the tables. The third (the one at the bottom of Figure 6.1) table
has a structure as was described in Section 6.1. It completely satisfies all our
requirements and in the remaining part of the chapter we will act as if we got
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such information directly from the workers compensation insurance company.

Risk class Year Payroll Loss P. key
2 1 12004031 270222 2.1

2 2 12713178 229566 2.2

2 3 13596610 596850 2.3

2 4 14811727 196539 2.4

2 5 12774073 134248 2.5

2 6 20245789 489312 2.6

2 7 24242468 418218 2.7

P. key S. key
Companys

name
Payrol Loss

Total Nr. of

Claims

Total

Claim

Amount
2.1.N1 2.1 N1 p.N1.1 l.N1.1 t.N1.1 c.N1.1

2.2.N1 2.2 N1 p.N1.2 l.N1.2 t.N1.2 c.N1.2

2.3.N1 2.3 N1 p.N1.3 l.N1.3 t.N1.3 c.N1.3

2.4.N1 2.4 N1 p.N1.4 l.N1.4 t.N1.4 c.N1.4

2.5.N1 2.5 N1 p.N1.5 l.N1.5 t.N1.5 c.N1.5

2.6.N1 2.6 N1 p.N1.6 l.N1.6 t.N1.6 c.N1.6

2.7.N1 2.7 N1 p.N1.7 l.N1.7 t.N1.7 c.N1.7

2.1.N2 2.1 N2 p.N2.1 l.N2.1 t.N2.1 c.N2.1

2.2.N2 2.2 N2 p.N2.2 l.N2.2 t.N2.2 c.N2.2

… … … … … … …
2.7.N100 2.7 N100 p.N100.7 l.N100.7 n.N100.7 c.N100.7

P. key S. key Date Name
Calim

amount
Group code Incident Place

1 2.1.N1 d1 name1 c1 0 i1 p1

2 2.1.N1 d2 name2 c2 d2.i2.p2 i2 p2

3 2.1.N1 d2 name3 c3 d2.i2.p2 i2 p2

4 2.1.N1 d2 name4 c4 d2.i2.p2 i2 p2

5 2.1.N1 d3 name5 c5 0 i3 p3

6 2.1.N1 d4 name6 c6 d4.i6.p4 i6 p4

7 2.1.N1 d4 name7 c7 d4.i6.p4 i6 p4

8 2.1.N1 d6 name8 c8 0 i8 p6

9 2.1.N1 d7 name9 c9 0 i9 p7

10 2.1.N1 d8 name10 c10 0 i10 p8

11 2.2.N1 d9 name11 c11 d9.i11.p9 i11 p9

12 2.2.N1 d10 name12 c12 d9.i11.p9 i12 p10

13 2.2.N1 d11 name13 c13 d9.i11.p9 i13 p11

14 2.2.N1 d12 name14 c14 d9.i11.p9 i14 p12

15 2.2.N1 d13 name15 c15 d9.i11.p9 i15 p13

16 2.2.N1 d14 name16 c16 d9.i11.p9 i16 p14

17 2.2.N1 d15 name17 c17 0 i17 p15

18 2.2.N1 d16 name18 c18 0 i18 p16

19 2.2.N1 d17 name19 c19 d17.i19.p17 i19 p17

20 2.2.N1 d18 name20 c20 d17.i19.p17 i20 p18

21 2.2.N1 d19 name21 c21 0 i21 p19

22 2.2.N1 d20 name22 c22 0 i22 p20

23 2.2.N1 d21 name23 c23 0 i23 p21

24 2.2.N1 d22 name24 c24 0 i24 p22

25 2.2.N1 d23 name25 c25 0 i25 p23

26 2.2.N1 d24 name26 c26 0 i26 p24

27 2.2.N1 d25 name27 c27 0 i27 p25

28 2.2.N1 d26 name28 c28 0 i28 p26

… … … … … … … …

Figure 6.1: Possible structure of the company’s database
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6.3 Two scenarios

Having the data, we can start the pricing procedure. As was already mentioned
we are going to cover the aggregate risk of the insurance company which is above
some retention level a. Denoting by S the total aggregate claim of the company
during some period of time (let us say one year), we obtain the risk (S− a)+ and
the risk S − (S − a)+ is left for the insurance company which buys the Stop-Loss
contract from us. It is clear that for such a contract the insurance company has
to pay some premium, which we denote by P . Our profit (which obviously is
not certain in advance) in that case becomes P − (S − a)+. Naturally, S will be
modeled by a sum of random variables which makes S a random variable itself.
In case we define P = E[(S − a)+], our position becomes quite risky (standard
deviation is positive) without any expected profit. Therefore, some additional
value must be added to the SLP . There are a lot of ways to define the loading of
the premium. In general this choice depends on many factors like risk averseness,
character of the risk gained, etc. The well known methods are the premium
with safety (or security) loading (where loading to SLP is defined as a fixed
constant times the SLP itself), variance principle (where loading to SLP is a
fixed constant times the variance of the Stop-Loss contract), standard deviation
principle (where loading to SLP is a fixed constant times the standard deviation
of the Stop-Loss contract) and quantile premium (which is defined as the value
at risk of the Stop-Loss contract at some probability level). Here we decide to
determine the premium according to the standard deviation principle, which is
defined as

P = E[(S − a)+] + ασ(S−a)+ ,

where α is a constant. In that case the standard deviation of our profit stays the
same, but the expected profit becomes positive and equal to ασ(S−a)+ . If α is
more than 1 and fixed, the expectation of our profit is larger than its standard
deviation and basically depends on the behavior of (S − a)+. That is why it is
very important for us to analyze the behavior of (S−a)+ since it basically defines
the scale of the profit (or loss). The two main quantities which characterize its
behavior are E[(S − a)+] and σ(S−a)+ .

The next step after fixing the premium principle is to choose the model for
the aggregate sum S. This is the major point since the whole example of the
dependence effect is going to be based on this choice. The idea is to consider
two scenarios. In the first scenario it is assumed that we utilize the indepen-
dence model (Model 1) and the second scenario illustrates the situation when
the modeling is based on Model 4. Both scenarios are assumed to be completely
independent. It can be thought of as two persons doing two different researches
and at the end we (as the head of the reinsurance company) compare the results.
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6.3.1 The first scenario

The first scenario considers the situation where the aggregate sum S is modeled
by Model 1 (see Table 3.1). After the structure of the model is chosen, we should
continue with the general data analysis to get an idea about the distributions
which are involved in the model. There are many methods available for this step
and we are not going into details. We simply act as if this step has been performed
and the decision is to model the total number of claims by the Poisson distribution
and the single claim amounts by the Gamma distribution. Hence, the aggregated
sum is modeled as

S =
N∑
i=1

Ci,

where N ∼ P (λ) and Ci ∼ Gamma(αC , βC) for i = 1, 2, . . .. When all the dis-
tributions have been determined, we can start the estimation procedure. For this
we need only the lowest table from the database which is illustrated in Figure 6.1.
Having this table, we simply collect the information we need for the estimation
purposes. An example of such a summary is presented in Table 6.6. The table

Risk class Year Total Nr. of claims µ̂C σ̂C
2 1 394 100514 4940
2 2 379 99750 5093
2 3 346 99679 5031
2 4 461 100233 4996
2 5 404 100033 4690
2 6 388 99710 4765
2 7 450 99730 4974

Table 6.6: Information summary for Model 1

presents aggregated information for each of 7 years. This information includes
total number of claims per year, estimated expected claim size and estimated
standard deviation of the claim sizes which occurred during the year. The final
estimates can be obtained from these numbers. In this particular example the
estimates are λ̂ = 403, µ̂C = 99959, σ̂C = 4930, from which the estimates of the
parameters of the distribution α̂C , β̂C can be obtained easily.

However, for simplicity we assume that the estimated parameters of the model
are

λ̂ = 400, α̂C = 400, β̂C = 0.004,

which directly yield µ̂C = 105 and σ̂C = 5000, which are quite close to the values
from the example presented above. Since the estimation aspect is not covered in
this chapter, we can simply act as if these estimates are the true values. This
actually is all the information we need to price the reinsurance contract under
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Model 1. Next, it is up to the insurance company to decide about the retention
level. It is clear that the higher the retention level, the cheaper the contract.

As long as we believe in our model, we can offer to the company several
contracts with different retention levels (and hence with different prices). Addi-
tionally we can provide information about the Value at Risk for the total claim
amount and standard deviation of the Stop-Loss contract and the retained risk.
Having this information, the company’s managers can decide which option is most
suitable for them. Table 6.7 contains an example of such information. Company’s
managers can compare the prices for the different retention levels and directly see
the probabilities of having a total claim amount larger than these levels (1− p).

If the company chooses contract 1 its risk stops at the retention level 40 million
(40 m) and the probability that the total claim amount exceeds this level is quite
high (1 − p = 0.5). But this contract is quite expensive. The cheapest contract
is the contract number 10, but the chance that it will be realized during the year
is quite small (about 0.001). In that case the company takes an additional 6 m
risk for its own account (46 instead of 40 m). Of course, it remains up to the
company to choose the contract. Our aim is to ask the suitable premium which
would secure our position.

6.3.2 The second scenario
Here we believe that there are some dependencies among the claims. This means
that there is a possibility to have two types of claims: the ones which come
separately (simple claims) and the ones which come together as a group (special
claims). In that case we believe that Model 4 (see Table 3.1) would be the best
tool to describe the behavior of the total claim amount. After such a decision
is made, we have to analyze the data more closely to decide which distributions
could be assumed for Model 4. Assume we arrived at the following assumptions
for the total claim amount:

S =
N∑
i=1

Ci +
H∑
k=1

Gk∑
j=1

Cjk,

where
N ∼ P (λ(1− ε)),

H ∼ P
(
ε
λ

µG

)
,

Gk ∼ P (L), for all k = 1, 2, . . .

L ∼ Gamma(αL.βL) and C ∼ Gamma(αC , βC).

Having all the assumptions, we can start the estimation. We use the same
database, but now we definitely need more information. Just as in the previous
case we collect the information we need from the lowest table of the database. An
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Risk class Year T µ̂C σ̂C H µ̂L σ̂L N
2 1 394 100514 4940 2 22 15 358
2 2 379 99750 5093 0 0 0 379
2 3 346 99679 5031 1 6 0 340
2 4 461 100233 4996 2 11 1 435
2 5 404 100033 4690 0 0 0 404
2 6 388 99710 4765 1 21 0 367
2 7 450 99730 4974 2 24 13 402

µ̂C : estimated expectation of the claim size per year
σ̂C : estimated standard deviation of the claim size per year
µ̂L: estimated expectation of the group size per year
σ̂L: estimated standard deviation of L per year
T : total number of claims per year
H: total number of groups per year
N : total number of individual claims per year

Table 6.8: Information summary for Model 4

example of the summarized information can be found in Table 6.8. Just as in the
first scenario the table presents aggregated information for each of 7 years. This
information includes total number of claims per year, total number of individual
claims per year, estimated expected claim size, estimated standard deviation of the
claim sizes which occurred during the year, number of dependence groups which
occurred during the year, estimated expectation of the group size due to different
companies and estimated standard deviation of L due to different companies. The
final estimates can be obtained from these numbers. In this particular example the
estimates are λ̂ = 403, µ̂C = 99959, σ̂C = 4930, ε̂ = 0.048, µ̂L = 17.1, σ̂L = 12.68,
from which the estimates of the parameters of the distribution α̂C , β̂C , α̂L, β̂L can
be obtained easily.

However, for simplicity we assume that the estimated parameters of the model
are

λ̂ = 400, ε̂ = 0.03, α̂L = 1, β̂L = 0.05, α̂C = 400, β̂C = 0.004.

Note that the estimated expectation and expected standard deviation of the claim
size just like in the first scenario are µ̂C = 105 and σ̂C = 5000. Having these
estimates we can get a lot of information about the total claim amount and the
contract itself for the reference year (just like we did in the case of Model 1).
Table 6.9 presents such information.

Note that here we use exactly the same database as we used in Model 1. The
only aspect we changed is the assumptions for the total number of claims during
the reference year. The next section presents a discussion how these changes affect
the Stop-Loss contract and the Value at Risk.
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6.4 Conclusions
In this section we discuss the consequences of ignoring the dependence effect.
The two sections above present the results of the reinsurance contract pricing
using two different models. The first model (Model 1) assumes that all the claims
arrive at independent time points while the second model (Model 4) assumes the
dependence structure.

In principle, all results are already available in Tables 6.7 and 6.9. However,
for comparison it is more convenient to see them all together in one table. Table
6.10 presents the comparison of all the quantities considered. From that table we
directly see that the SLP under Model 4 is much higher than the one under Model
1 in a relative sense and this difference becomes huge for high retention levels.
This fact definitely has to be a signal for the company and for us (who play a role
of reinsurer). It means that the expected risk of selling the Stop-Loss contract is
much higher than we expected using Model 1. However, in case the premium is
determined according to the standard deviation principle, the dominant quantity
in the premium is not the SLP but the standard deviation. In spite of the fact
that the relative difference in standard deviation according to different models is
smaller (but still huge) than in case of the SLP , the absolute values are much
larger (see Tables 6.7 and 6.9).

Also there is a huge difference in a relative sense between the second moments
of the contract (quantity (S − a)+). For the highest retention level it could
reach a factor 380 (38000%). This definitely means that the tail of the contract
distribution can be much heavier than we expected using Model 1. All this shows
that the supposed rare events are not so rare after all and thus can cause a lot of
troubles for the reinsurer.

It can be noted that the relative difference in V aR between the two models
is much smaller than in case of the SLP or the standard deviation. However, it
is clear that the absolute differences of V aR is much larger than the ones of the
SLP or the standard deviation, which makes the factor 0.17 still very significant.
Therefore, the general conclusion is to consider both the relative and the absolute
difference. None of these two comparison methods is more important and the
final decision should be based on both of them.
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Chapter 7

Estimation Effects

As usual in stochastic modeling, all the parameters which are involved in the
model considered, have to be estimated. Replacing the unknown model parame-
ters by their estimates (which are usually obtained from the data) will result in
estimation errors. Just as with ignoring the dependence effect, it is too optimistic
to act as if the estimation errors are negligible, unless the number of observations
is large. This topic, the effect of the estimation step, is exactly the issue which is
addressed in this chapter.

The model of consideration (Model 4) was introduced in Chapter 3. The model
is too complicated to allow an exact evaluation of the estimation effects in such a
way that transparent conclusions can be drawn. Therefore, we use approximations
which were introduced in 4.1.4. The accuracy of these approximations has been
settled in Chapter 5. In general, two aspects play a role when considering the
effect of the estimation step: the accuracy of the estimators and the fluctuation of
the risk measure considered as function of the parameters. The set of parameters
(just like the model itself) may be divided into two parts, those concerning the
ordinary claims and those which are inserted in particular for the special causes.
For the first part a lot of data are usually available and these parameters can
be estimated quite accurately. However, it is obvious that special claims do not
appear very often and hence estimation of the parameters linked up with the
common risk part is expected to be much less accurate. As was mentioned before,
their influence on the final outcome, even when a rather small part is due to a
common risk, is quite large and hence estimation of the parameters connected
with the special causes is the most important issue.

In Section 7.1 the needed structure of the observations to obtain estimators
is given and the estimators based on them are derived. The local behavior of
the risk measures considered is discussed in Section 7.2. In total there are two
risk measures which will be presented in this chapter. These are SLP and V aR.
Analysis of the estimation effect of SLP was already performed in the paper of
Albers and Kallenberg [2007], therefore only the main conclusions and results will
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be presented here. Regardless the fact that the main analysis will be concentrated
on V aR, some important conclusions and theorems which were derived in Albers
and Kallenberg [2007] for SLP will be used here as well. Moreover, most theory
developed in Albers and Kallenberg [2007] is independent from the specific fea-
tures of the risk measures. These parts will be presented in Section 7.3 in general
form with a later application on SLP and V aR. Sections 7.4 and 7.5 discuss the
estimation effect when V aR and SLP are the calculation targets.

7.1 Observations and estimators
In this section we describe the basic structure of the observations and derive the
formulas for the estimators. The general data structure which we need for the
model implementation was described in detail in Chapter 6. The main conclusion
was that each claim should be considered as a pair (Xi, Yi), where Xi is the claim
amount and Yi is the group code, 0 for the independent (ordinary) claim and
1, 2, . . . for the various dependent claims (due to the common risk). Hence, in
case several claims can be considered as a dependent group, all of them must
have the same Y part. Assuming that such a structure is given, the following
information can be deduced

n : the number of independent claims
c1, . . . , cn : the claim amounts for the independent claims

h : the number of group codes for the dependent claims
g1, . . . , gh : the group sizes

d11, . . . , dghh : the claim amounts for the dependent claims.

It will typically not be enough to have these data for one year. The reason
for that is the scarcity of special claims. For a reasonable estimation of ε, µG
and γG we have to consider more years, which will be denoted in what follows
by t = 1, . . . , u. Therefore, the estimators will be based on Nt, C1t, . . . , CNtt, Ht,
G1t, . . . , GHtt, D11t, . . . , DGHtHtt

, for t = 1, . . . , u.
For the observed data nt, c1t, . . . , cntt, ht, g1t, . . . , ghtt, d11t, . . . , dghthtt, with

t = 1, . . . , u, the likelihood equals

exp(−θ)θntot+htotphtot(1− p)ntot ×

{
u∏
t=1

ht∏
k=1

P (G = gkt)

}

×
u∏
t=1

{ nt∏
i=1

fC(cit)

}
ht∏
k=1

gkt∏
j=1

fC(djkt)


× u∏

t=1

1
nt!ht!unt+ht

,

where
θ = θ(λ, ε, µG) = uλ(1− ε+ εµ−1

G ),
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p = p(ε, µG) =
εµ−1
G

1− ε+ εµ−1
G

,

ntot =
u∑
t=1

nt and htot =
u∑
t=1

ht.

For simplicity we will often write n and h instead of ntot and htot. Maximizing
the likelihood w.r.t. λ for given ε and µG gives θ̂ = n+ h and hence

λ̂ = λ̂(ε, µG) =
n+ h

u(1− ε+ εµ−1
G )

.

After inserting the above estimate, it can be noted that exp(−θ̂)θ̂n+h does not
depend on (ε, µG) anymore. Next, the likelihood is maximized w.r.t. ε for given
µG by taking p̂ = h/(n+ h) and hence

ε̂ = ε̂(µG) =
h

h+ nµ−1
G

.

Inserting this we can note that p̂h(1 − p̂)n does not depend on µG. It is seen
that we end up with the likelihood of the G’s times the likelihood of the C’s
and D’s. This means that we can proceed with estimating the parameters of the
distribution of G using only the G-observations and, separately, estimating the
parameters of the distribution of C using the C and D observations.

Assuming that L follows the Gamma distribution, the distribution of G will
be a negative binomial. Although in general the number of observations from this
negative binomial distribution,

∑u
t=1Ht, will be not very large, the expectation of

G is as a rule not small, say between 5 and 20. Under these circumstances, Saha
and Paul [2005] show that moment estimators are a good alternative to maximum
likelihood estimators.

Both when L has a Gamma distribution and when L has an IG distribution, G
has a distribution with two parameters. Moment estimators do not depend on the
parametrization. It is convenient to take as parametrization for G its expectation
µG and its coefficient of variation γG (see Remarks 3.1 and 7.1). The moment
estimates of the expectation and coefficient of variation are

µ̂G = ḡ =
1
h

u∑
t=1

ht∑
k=1

gkt,

γ̂G =
1
ḡ

√
g2 − ḡ2, where g2 =

1
h

u∑
t=1

ht∑
k=1

g2
kt.

Inserting µ̂G in ε̂, and writing gtot =
∑u
t=1

∑ht
k=1 gkt, we get

ε̂ =
h

h+ nḡ−1
=

hḡ

hḡ + n
=

gtot
gtot + ntot

,
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which indeed is the "natural" (observed fraction special claims) estimate of ε.
Inserting ε̂ = hḡ/(hḡ + n), µ̂G = ḡ in λ̂ gives

λ̂ =
hḡ + n

u
=
gtot + ntot

u
,

which also is the "natural" (observed total number of claims divided by the num-
ber of years) estimate of λ. For simplicity we denote

h̄ =
1
u

u∑
t=1

ht =
h

u
, n̄ =

1
u

u∑
t=1

nt =
n

u
,

to get
λ̂ = h̄ḡ + n̄.

For the estimation of the parameters of the claim size distribution C we have
much more observations, compared to the group size G. Therefore we definitely
can use moment estimators here as well. As parametrization we once more take
the expectation µC and the coefficient of variation γC . Denoting

c+ d =
1

ntot + gtot

 u∑
t=1

nt∑
i=1

cit +
u∑
t=1

ht∑
k=1

gkt∑
j=1

djkt

 ,
and

c2 + d2 =
1

ntot + gtot

 u∑
t=1

nt∑
i=1

c2it +
u∑
t=1

ht∑
k=1

gkt∑
j=1

d2
jkt

 ,
we get

µ̂C = c+ d,

and

γ̂C =

√
c2 + d2 − (c+ d)2

c+ d
.

As a section summary we present our estimators. These are

µ̂G = G, µ̂C = C +D,

λ̂ =
Gtot +Ntot

u
, ε̂ =

Gtot
Gtot +Ntot

, (7.1)

γ̂G =

√
G2 −G2

G
, γ̂C =

√
C2 +D2 − C +D

2

C +D
,

where u is the number of years and

Htot =
u∑
t=1

Ht, Ntot =
u∑
t=1

Nt, Gtot =
u∑
t=1

Ht∑
k=1

Gkt,
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G =
1

Htot

u∑
t=1

Ht∑
k=1

Gkt, G2 =
1

Htot

u∑
t=1

Ht∑
k=1

G2
kt,

C +D =

∑u
t=1

∑Nt
i=1 Cit +

∑u
t=1

∑Ht
k=1

∑Gkt
j=1Djkt

Ntot +Gtot
,

C2 +D2 =

∑u
t=1

∑Nt
i=1 C

2
it +

∑u
t=1

∑Ht
k=1

∑Gkt
j=1D

2
jkt

Ntot +Gtot
.

Remark 7.1. Obviously, we can replace the parameters µG and γG and their esti-
mators µ̂G and γ̂G by the parameters µL and γL and the corresponding estimators
µ̂L and γ̂L. Since µG = µL and σ2

G = µL+σ2
L, implying that γL = µ−1

G

√
σ2
G − µG,

we get
µ̂L = G,

γ̂L =

√
G2 −G2 −G

G
. (7.2)

As long as γL is not equal to 0 or close to it, there is no problem with γ̂L. However,
when γL = 0 (or close to 0) it may easily happen that G2−G2−G < 0 and hence
a problem arises with application of (7.2). Note that the case γL = 0 corresponds
to a fixed parameter of the Poisson distribution of G, a situation which we also
want to take into account. In view of the problems with (7.2), indeed it is more
convenient to use the parametrization µG, γG (see also Remark 3.1). �

7.2 Local behavior of the risk measures
The main goal of the chapter is to analyze the effect of the parameters estimation
for some insurance products. As two candidates we consider V aR and SLP . The
influence of the estimators on the considered insurance products (measures) cer-
tainly depends on their behavior as a function of the parameters µC , γC , µG, γG, ε,
λ, which are going to be estimated, as well as on the accuracy of the estimators.
For instance, if SLP is a flat function of the parameters µC , γC , µG, γG, ε, λ and
the estimators are accurate, the small changes due to the estimation will have
not much effect. So, these two points have to be considered: how fluctuate the
quantities considered (V aR and SLP ) and how accurate are the estimators. In
this section we discuss the first point, the second one will be covered in the later
sections.

7.2.1 Local behavior of V aR
We will start with analyzing the behavior of V aR. It is defined as the inverse of
the cumulative distribution function of S, the aggregated claim amount. Hence

V aR = F−1
S (p),
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where p is a fixed risk level. Therefore, it is quite clear that under the model
considered V aR has a very complicated structure and some approximation (sim-
plification) techniques have to be applied.

We are going to apply two simplification steps. In the first step, we approxi-
mate the distribution of S by the IG distribution, applying the so-called Inverse-
Gaussian approximation, which was described in detail in Section 4.1.4, see also
Section 4.3.3. The following lemma describes the first simplification step.

Lemma 7.1. After introducing a temporary notation θ = (µC , γC , µG, γG, ε, λ),
fixing some probability level p and denoting by V aRapp(θ) the approximated V aR
value at p, we can write that

V aRapp(θ) = µS(θ) + t(κ3S (θ))σS(θ),

where

µS(θ) = λµC , (7.3)

σS(θ) =
√
λµC

√
1 + γ2

C + ε(1 + γ2
G − 1/µG)µG, (7.4)

and t(κ3S(θ)) is calculated as a solution of

g(κ3S(θ), t(κ3S(θ))) = 0, (7.5)

where the function g(·, ·) is defined by the IG approximation, i.e.

g(x, y) = Φ

(
y√

xy/3 + 1

)
+ e2(3/x)2Φ

(
−y − 6/x√
xy/3 + 1

)
− p.

Proof. Using the Inverse-Gaussian approximation, the real density fS(s) is
approximated by the Inverse-Gaussian density fIG(s− x0IG), with the appropri-
ate parameters αIG = 3σS/κ3S , βIG = κ3SσS/3 and x0IG = µS − 3σS/κ3S , see
Section 4.1.4 and Table 3.2. Hence, the needed distribution function FS(s) is ap-
proximated by FIG (s− x0IG), which, using the identity (4.16), can be expressed
in terms of the standard normal distribution function as

Φ

(
s− x0IG − αIG√
βIG (s− x0IG)

)
+ e2αIG/βIGΦ

(
− (s− x0IG)− αIG√

βIG (s− x0IG)

)
.

Replacing s (which is basically the needed value of V aR at probability p) by
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µS(θ) + t(κ3S(θ))σS(θ) and substituting αIG, βIG and x0IG, we obtain

FIG (s− x0IG)− p

=Φ

(
t(κ3S(θ))√

κ3S(θ)t(κ3S(θ))/3 + 1

)

+e2(3/κ3S(θ))2Φ

(
−t(κ3S(θ))− 6/κ3S(θ)√
κ3S(θ)t(κ3S(θ))/3 + 1

)
− p

=g (κ3S (θ) , t (κ3S (θ))) .

Hence, solving g(κ3S(θ), t(κ3S(θ))) = 0 w.r.t. t(κ3S(θ)) and substituting (7.3)
and (7.4) gives us the needed approximation of V aR, V aRapp(θ) = µS(θ) +
t(κ3S (θ))σS(θ). The formulas (7.3) and (7.4) are obtained from Lemma 3.3 and
Lemma 3.4(i) using that D is distributed as C and that µL = µG, γ

2
L = γ2

G−1/µG.
�

The above explained simplification step definitely makes life easier, but the
resulting function is still rather complicated. Therefore, we apply a one step
Taylor expansion on the approximation around the true value (µC0, γC0, µG0, γG0,
ε0, λ0) of the parameters. This linearization will be called V aRapp1 and its general
form is

V aRapp1(µC , γC , µG, γG, ε, λ) = V aRapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ (µC − µC0)
∂

∂µC
V aRapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+ (λ− λ0)
∂

∂λ
V aRapp(µC0, γC0, µG0, γG0, ε0, λ0). (7.6)

For the final set up we need the partial derivatives of V aRapp. The general
form of the V aRapp derivative w.r.t. the parameter θi (one of the components of
the vector θ) is

∂V aRapp(θ)
∂θi

=
∂µS(θ)
∂θi

+ t′(κ3S(θ))
∂κ3S(θ)
∂θi

σS(θ) + t(κ3S(θ))
∂σS(θ)
∂θi

.

The partial derivatives of µS , σS and κ3S are straightforward. The general ex-
pressions for µS and σS are given in (7.3) and (7.4), and are not complicated.
Assuming that C and L follow different Gamma distributions, the closed form
expression for κ3S can be written as, see also Lemma 3.3 and 3.4,

κ3S =
κ?3S
σ3
S

,

with

κ?3S = λν3C

{
1 + ε

[
µ2
G

(
ν3L

µ3
G

)(
µ3
C

ν3C

)
+ 3µG

(
ν2L

µ2
G

)(
µCν2C

ν3C

)]}
,
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and
ν2C = (γ2

C + 1)µ2
C ,

ν2L = (γ2
G − 1/µG + 1)µ2

G,

ν3C = µ3
C(1 + 3γ2

C + 2γ4
C),

ν3L = µ3
G(1 + 3(γ2

G − 1/µG) + 2(γ2
G − 1/µG)2).

The only problem is the derivative of t as a function of κ3S . At this place we
apply the implicit function theorem. Denoting

gx(x, y) =
∂g(x, y)
∂x

and gy(x, y) =
∂g(x, y)
∂y

,

the required derivative takes the form

t′(κ3S) = −gx(κ3S , t(κ3S))
gy(κ3S , t(κ3S))

.

We do not present the explicit expressions for these derivatives since these
are quite complicated, but they can be easily implemented in any mathematical
software.

The accuracy of the IG approximation in the considered range of the un-
derlying parameters was analyzed in detail in Section 5.2. Table 7.1 gives an
impression of the accuracy of V aRapp1. Here C and L each have a (different)
Gamma-distribution and for the true value of the parameters we have the following
representative choice: (µC0, γC0, µG0, γG0, ε0, λ0)=(100000, 0.7, 15, 0.8, 0.03, 400),
implying γL0 = 0.76. For this fixed choice we have V aRapp(100000, 0.7, 15,
0.8, 0.03, 400) = 43904712, 47861121, 49877491, 52037384 for p = 0.9,0.99,0.9975,
0.9995 respectively. For convenience, we also present the values of

γL =
√
γ2
G − µ

−1
G .

Table 7.1 indicates that the approximation V aRapp1 is sufficiently accurate for
our purposes. Therefore, precisely this approximation will be used in the next sec-
tions. Having in mind that V aRapp1(µC0, γC0, µG0, γG0, ε0, λ0) = V aRapp(µC0,
γC0, µG0, γG0, ε0, λ0), we can note that Table 7.1 also gives interesting information
on the error in V aRapp(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂)−V aRapp(µC0, γC0, µG0, γG0, ε0, λ0)
due to replacing V aRapp by V aRapp1.

V aRapp1 is basically a linearization of the V aRapp function around the fixed
point (µC0, γC0, µG0, γG0, ε0, λ0). As soon as we believe that V aRapp, V aRapp1
are good approximations of V aR, we can hope that the coefficients ∂

∂µC
V aRapp

(µC0, γC0, µL0, γL0, ε0, λ0) . . . ∂
∂λV aRapp(µC0, γC0, µL0, γL0, ε0, λ0) determining

V aRapp1 will give some impression of the V aR fluctuation at the given point.
To get some impression about the order of magnitude of these coefficients we

have calculated these at (µC0, γC0, µL0, γL0, ε0, λ0) =(100000, 0.7, 15, 0.8, 0.03,
400) using the same distributional assumptions. The results are given in Table
7.2.
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7.2.2 Local behavior of SLP
This section has exactly the same structure and main goals as the previous one.
The only difference is that now, instead of V aR, we analyze the behavior of the
SLP . Moreover, this work has already been done in Albers and Kallenberg [2007],
hence we will be brief here. The definition of SLP is

E(S − a)+.

Here a is the retention level which depends on µS and σS . The larger µS and σS ,
the larger retention a will be chosen. This is a natural approach, which is used in
the entire thesis. Defining k by a = µS + kσS , or

k =
a− µS
σS

,

we will assume that k is chosen in advance, determining the retention a in "stan-
dard units". That means that in our approach k does not depend on the param-
eters, while a does depend on the parameters µC , γC , µG, γG, ε, λ through µS and
σS .

In order to get insight into the fluctuation of

E(S − a)+ = σSE

(
S − µS
σS

− k
)+

,

we have to simplify σSE(σ−1
S (S−µS)−k)+ somewhat, because otherwise no con-

clusions can be drawn. Just as in the previous section we apply two simplification
steps. The first step concerns the approximation for the distribution of S. Using
the conclusion of Chapter 5, the best candidates are the IG or the Gamma-IG
approximation. In spite of the fact that the Gamma-IG approximation showed
better results (compared to the IG approximation), the IG approximation will
be used in this chapter as a basic approximation. It has a clear advantage of
simplicity and, together with the reasonable accuracy (it still matches our chosen
criterion), it is considered as a handy approximation tool. All the theoretical
results will be proven on the basis of the IG approximation, thus denoting by
SLPapp the first-step approximation of SLP .

The second simplification step, as in the V aR simplification case, will be a
one step Taylor expansion on the approximation around the true value (µC0, γC0,
µG0, γG0, ε0, λ0) of the parameters. Similarly to the previous section we call this
function SLPapp1, which is given by

SLPapp1(µC , γC , µG, γG, ε, λ) = SLPapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ (µC − µC0)
∂

∂µC
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+ (λ− λ0)
∂

∂λ
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0). (7.7)
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Table 7.3 gives an impression of the accuracy of SLPapp1. Again, C and L
have (different) Gamma-distributions and for the true value of the parameters we
use the same choice: (µC0, γC0, µG0, γG0, ε0, λ0)=(100000, 0.7, 15, 0.8, 0.03,
400), implying γL0 = 0.76. For this fixed choice we have
SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) = 1164042, 292282, 56003, 9086 for k = 0, 1,

2, 3 respectively. For convenience, we also present the values of γL =
√
γ2
G − µ

−1
G .

To get some impression about the order of magnitude of the coefficients in
SLPapp1 (partial derivatives of SLP w.r.t. the different parameters) we have
calculated these at (µC0, γC0, µG0, γG0, ε0, λ0) =(100000, 0.7, 15, 0.8, 0.03, 400) us-
ing the same distributional assumptions. The results are given in Table 7.4. It
can be seen that the coefficients of the λ-term are very small, compared to the
remaining terms, and the coefficients of the ε-term are large. This means that the
function is not very sensitive to changes in λ and the other way around for ε.

7.3 Asymptotic behavior of the estimators

In this section we discuss the asymptotic behavior of the estimators which later
will be used in the analysis of the estimation effect and construction of the confi-
dence bounds for the risk measures considered. The asymptotics will be considered
w.r.t. λ, which will be assumed to tend to infinity. That seems to be the natu-
ral way, because λ is the total expected number of claims, that is the expected
number of observations. The other parameters are assumed to be fixed.

The theory in this section will be based on the paper of Albers and Kallenberg
[2007], where the same theory was presented for SLP . However, all the theorems
which are presented in the paper can be formulated in general form, without
any connection to the risk measures. To make the chapter self contained, some
theorems (without proofs) from Albers and Kallenberg [2007] will be repeated
here.

Our estimates are

µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂

These are functions of the vector(
C +D,C2 +D2, G,G2, H,N

)
,

the components of which were presented in Section 7.1. Therefore, to get the
asymptotic behavior of the estimators, we start with the asymptotic behavior of
the vector above.
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Theorem 7.2. Assume that λ→∞ and that u, µC , γC , µG, γG, ε are fixed. Let

X1λ =
{
C +D

µC
− 1
} √

uλ

γC
,

X2λ =

{
C2 +D2

µ2
C

− (1 + γ2
C)

} √
uλ

γC
,

X3λ =
{
G

µG
− 1
}√

εuλ

µG
,

X4λ =

{
G2

µG
− µG(1 + γ2

G)

}√
εuλ

µG
,

X5λ =
{
HµG
ελ
− 1
}√

εuλ

µG
,

X6λ =
{

N

λ(1− ε)
− 1
}√

uλ(1− ε).

Then, as λ→∞,

(X1λ, X2λ, X3λ, X4λ, X5λ, X6λ)→ (U1, U2, U3, U4, U5, U6)

with

(U1, U2) ∼N
(

0, 0,
1
2 + γCκ3C

,
2 + γCκ3C

γ2
C(κ4C + 2) + 4γCκ3C + 4

)
,

(U3, U4) ∼N
(

0, 0,
γ2
G

µGγ
2
G(2 + γGκ3G) ,

µGγ
2
G(2 + γGκ3G)

µ2
Gγ

2
G

{
γ2
G(κ4G + 2) + 4γGκ3G + 4

} ) ,
U5 ∼N(0, 1), U6 ∼ N(0, 1)

and (U1, U2), (U3, U4), U5, U6 independent.

Proof. For the proof see Theorem 5.1 in Albers and Kallenberg [2007]. �

Remark 7.2. Theorem 7.2 can be applied to G ∼ P (L) with parametrization
µL, γL. The necessary condition for that is the final fourth moment of L. We
rewrite X3λ and X4λ as

X3λ =
{
G

µL
− 1
}√

εuλ

µL
,

X4λ =

{
G2

µL
− µL

(
1 + γ2

L

)
− 1

}√
εuλ

µL
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and use the formula γ2
G = γ2

L + µ−1
L . The asymptotic normality in that case is

described by (U3, U4), which is distributed as

N

0, 0,
γ2
L + µ−1

L

µLγ
2
L (2 + γLκ3L)

+2 + 3γ2
L + µ−1

L

,

µLγ
2
L (2 + γLκ3L)

+2 + 3γ2
L + µ−1

L

µ2
Lγ

2
L

{
γ2
L (κ4L + 2) + 4γLκ3L + 4

}
+2µL

(
3γ3
Lκ3L + 8γ2

L + 2
)

+ 6 + 7γ2
L + µ−1

L

 .

Obviously, in X5λwe can replace µG by µL. �

The following theorem gives the asymptotic behavior of linear combination of
the estimators. Later these results will be used in the analysis of the estimation
effects on the risk measures.

Theorem 7.3. Assume that λ→∞ and that u, µC , γC , µG, γG, ε are fixed and all
positive with ε < 1. Let c1, c2, . . . , c6 be deterministic functions of µC , γC , µG, γG, ε
and λ. Define

Z1 =c1
µ̂C − µC
µC

+ c2 (γ̂C − γC) ,

Z2 =c3 (µ̂G − µG)
√
ε+ c4 (γ̂G − γG)

√
ε+ c5

(
ε̂− ε
ε

)√
ε+ c6

λ̂− λ
λ

.

Then, as λ→∞, (
Z1

τ1
,
Z2

τ2

)√
uλ→ (V1, V2)

with V1, V2 independent and V1 ∼ N(0, 1) and V2 ∼ N(0, 1) with

τ2
1 = γ2

C

{
c21 + c1c2 (κ3C − 2γC) + c22

(
γ2
C + κ4C/4 + 1/2− γCκ3C

)}
and

τ2
2 =c23µ

3
Gγ

2
G

+c24µGγ
2
G

(
γ2
G − γGκ3G + κ4G/4 + 1/2

)
+c25 (1− ε)

{
µG (1− ε)

(
1 + γ2

G

)
+ ε
}

+c26
{
µGε

(
1 + γ2

G

)
+ 1− ε

}
+c3c4µ2

Gγ
2
G (κ3G − 2γG)

+2c3c5 (1− ε)µ2
Gγ

2
G

+2c3c6
√
εµ2
Gγ

2
G

+c4c5µGγ2
G (1− ε) (κ3G − 2γG)

+c4c6µGγ2
G

√
ε (κ3G − 2γG)

+2c5c6
√
ε (1− ε)

{
µG
(
1 + γ2

G

)
− 1
}
.
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Proof. We start with considering Z1. By using (5.2) and (5.3) in Albers and
Kallenberg [2007] we have

µ̂C − µC
µC

√
uλ = X1λγC (7.8)

and
(γ̂C − γC)

√
uλ =

1
2
X2λ −X1λ

(
1 + γ2

C

)
+OP

(
λ−1/2

)
(7.9)

as λ→∞. Now, using (7.8) and (7.9), we can write that

Z1

τ1

√
uλ =τ−1

1

{
c1X1λγC + c2

(
1
2
X2λ −X1λ

(
1 + γ2

C

)
+OP

(
λ−1/2

))}
=τ−1

1

{
c1 (X1λ − U1) γC + c2

(
1
2

(X2λ − U2)− (X1λ − U1)
(
1 + γ2

C

))}
+τ−1

1

{
c1U1γC + c2

(
1
2
U2 − U1

(
1 + γ2

C

))}
+
c2
τ1
OP

(
λ−1/2

)
.

Next we show that |c1/τ1| and |c2/τ1| are bounded above as functions of λ. This
simply follows from the fact that τ2

1 = V ar [c1X + c2Y ] with X = U1γC and Y =
U2/2 − U1

(
1 + γ2

C

)
and thus τ2

1 ≥
(

1− ρ (X,Y )2
)

max {V ar [c1X] , V ar [c2Y ]}.
Since X and Y do not depend on λ (and therefore V ar [X], V ar [Y ] and ρ (X,Y )
also do not depend on λ) the result immediately follows.

Application of Theorem 7.2 now yields

Z1

τ1

√
uλ = τ−1

1

{
c1U1γC + c2

(
1
2
U2 − U1

(
1 + γ2

C

))}
+ oP (1)

and hence τ−1
1 Z1

√
uλ converges in distribution to a N (0, 1) random variable.

In the proof of Theorem 5.2 of Albers and Kallenberg [2007] it has been shown
that

(µ̂G − µG)
√
εuλ = X3λµ

3/2
G , (7.10)

(γ̂G − γG)
√
εuλ

=
1
2
γ−1
G µ

−1/2
G

{
X4λ − 2µG

(
1 + γ2

G

)
X3λ

}
+OP

(
λ−1/2

)
, (7.11)

(
ε̂− ε
ε

)√
εuλ

= (1− ε)µ1/2
G (X5λ +X3λ)−X6λ (ε (1− ε))1/2 +OP

(
λ−1/2

)
(7.12)
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and

λ̂− λ
λ

√
uλ = (εµG)1/2 (X5λ +X3λ) + (1− ε)1/2

X6λ +OP

(
λ−1/2

)
(7.13)

as λ → ∞. Now consider Z2τ
−1
2

√
uλ. Using (7.10)-(7.13) we can write that

τ−1
2 Z2

√
uλ is equal to

c3
τ2

(X3λ − U3)µ3/2
G +

c4
τ2

(
1
2
γ−1
G µ

−1/2
G

{
(X4λ − U4)− 2µG

(
1 + γ2

G

)
(X3λ − U3)

})
+
c5
τ2

(
(1− ε)µ1/2

G ((X5λ − U5) + (X3λ − U3))− (X6λ − U6) (ε (1− ε))1/2
)

+
c6
τ2

(
(εµG)1/2 ((X5λ − U5) + (X3λ − U3)) + (1− ε)1/2 (X6λ − U6)

)
+ τ−1

2

[
c3U3µ

3/2
G + c4

(
1
2
γ−1
G µ

−1/2
G

{
U4 − 2µG

(
1 + γ2

G

)
U3

})
+ c5

(
(1− ε)µ1/2

G (U5 + U3)− U6 (ε (1− ε))1/2
)

+ c6

(
(εµG)1/2 (U5 + U3) + (1− ε)1/2

U6

)]

+
(
c4
τ2

+
c5
τ2

+
c6
τ2

)
OP

(
λ−1/2

)
.

By a similar argument as before it follows that |c3/τ2|, |c4/τ2|, |c5/τ2| and |c6/τ2|
are bounded above as functions of λ. Note that τ2

2 is of the form V ar[c3X1

+c4X2 + c5X3 + c6X4] and thus τ2
2 ≥

(
1− ρ?2i

)
V ar [c2+iXi], i = 1, . . . , 4, where

ρ?2i is the multiple correlation coefficient of Xi with the other Xj ’s, which does
not depend on λ.

Application of Theorem 7.2 gives that τ−1
2 Z2

√
uλ converges to a N (0, 1) ran-

dom variable. Since Z1 is a function of X1λ and X2λ, and Z2 a function of
X3λ, . . . , X6λ, the asymptotic independence of (X1λ, X2λ) and (X3λ, . . . , X6λ)
completes the proof. �

Remark 7.3. Theorem 7.3 can be applied to G : P (L) with parametrization
µL, γL (provided that the fourth moment of L is finite), replacing c3 (µ̂G − µG)
×
√
ε+ c4(γ̂G − γG)

√
ε by c3 (µ̂L − µL)

√
ε+ c4(γ̂L − γL)

√
ε and τ2

2 by
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τ2
2 = c23(µ3

Lγ
2
L + µ2

L)

+ c24

{
µLγ

2
L

(
γ2
L − γLκ3L +

κ4L

4
+

1
2

)
− γ2

L + γLκ3L + 1 +
1
2
µ−1
L (1 + γ−2

L )
}

+ c25(1− ε){µL(1− ε)(1 + γ2
L) + 1}

+ c26{µLε(1 + γ2
L) + 1}

+ c3c4µ
2
Lγ

2
L(κ3L − 2γL)

+ 2c3c5(1− ε)(µ2
Lγ

2
L + µL)

+ 2c3c6
√
ε(µ2

Lγ
2
L + µL)

+ c4c5µLγ
2
L(1− ε)(κ3L − 2γL)

+ c4c6µLγ
2
L

√
ε(κ3L − 2γL)

+ 2c5c6µL
√
ε(1− ε)(1 + γ2

L).

�

The following results present the asymptotic behavior of some functions of the
estimators considered.

Lemma 7.4. Let us denote θ = (µC , γC , µG, γG, ε, λ) with θi = µC , γC , µG, γG,

ε, λ for i = 1, 2, 3, 4, 5, 6, respectively. Denote also θ̂ =
(
µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂

)
,

Ω =
{
θ|θ ∈ R6

+, ε < 1
}
. We assume that Model 4 holds and that C and D are

identically distributed with a Gamma, Inverse Gaussian or lognormal distribution.
In that case

(a) µS (θ) , σS (θ) , κ3S (θ) , κ4S (θ) ∈ C1 (Ω), where C1 (Ω) is used to denote the
set of differentiable functions whose derivative is continuous in Ω,

(b)
µS(θ̂)
µS(θ)

P→ 1,
σS(θ̂)
σS(θ)

P→ 1,
κ3S(θ̂)
κ3S(θ)

P→ 1 as λ→∞ ,

(c)
∂
∂θi

µS(θ̂)
∂
∂θi

µS(θ)

P→ 1,
∂
∂θi

σS(θ̂)
∂
∂θi

σS(θ)

P→ 1,
∂
∂θi

κ3S(θ̂)
∂
∂θi

κ3S(θ)

P→ 1 as λ→∞.

Proof. Using Lemma 3.1 and (3.1), we directly obtain

µS =λf1 (µC) ,

σS =λ1/2f2 (µC , γC , µG, γG, ε) ,

κ3S =λ−1/2f3 (µC , γC , µG, γG, ε) , (7.14)
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where

f1 (µC) =µC ,

f2 (µC , γC , µG, γG, ε) =
[
(1− ε)ν2C + (ε/µG){ν2Gµ

2
C + µGσ

2
C}
]1/2

,

f3 (µC , γC , µG, γG, ε) =
(1− ε)ν3C + (ε/µG){ν3Gµ

3
C + 3ν2GµCσ

2
C + µGκ

?
3C}

f3
2 (µC , γC , µG, γG, ε)

.

Because for the distributions of C considered here quantities like ν3C , κ
?
3C are nice

functions of (µC , γC) and similarly for G, we obtain the result given in (a). Since
the estimators µ̂C , γ̂C , µ̂G, γ̂G, ε̂ are consistent estimators of the corresponding
parameters as λ→∞, we directly obtain

f1 (µ̂C , )
f1 (µC , )

P→1,

f2 (µ̂C , γ̂C , µ̂G, γ̂G, ε̂)
f2 (µC , γC , µG, γG, ε)

P→1,

f3 (µ̂C , γ̂C , µ̂G, γ̂G, ε̂)
f3 (µC , γC , µG, γG, ε)

P→1

as λ→∞. Because (see (7.13)) λ̂/λ = 1 +OP
(
λ−1/2

)
and hence

λ̂

λ

P→ 1, (7.15)

(b) follows directly. Using (a), (7.15) and the consistency of the estimators, we
obtain (c). �

Lemma 7.5. Suppose that the assumptions and notations of Lemma 7.4 hold.
Then

(a) SLPapp (θ) = σS (θ)h (κ3S (θ)) with

h (y) =
∫ ∞
k

x− k√
2π
(
1 + 1

3xy
)3 exp

{
− x2

2
(
1 + 1

3xy
)} dx,

(b) lim
y→0

h(y) =
∫∞
k

(x− k)φ (x) dx = φ (k)− kΦ (−k),

(c) lim
y→0

h′ (y) = 1
6kφ (k),

(d)
SLPapp(θ̂)
SLPapp(θ)

P→ 1 as λ→∞,

(e)
∂
∂θi

SLPapp(θ̂)
∂
∂θi

SLPapp(θ)

P→ 1 as λ→∞.
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Proof. Taking a = µS + kσS and inserting (4.32) in the IG approximation gives
(a). Direct calculation of the limit of h (y) gives (b). Direct calculation gives

h′ (y) = −
∫ ∞
k

(1/2)x (x− k)√
2π (1 + (1/3)xy)5

exp
{
− x2

2 (1 + (1/3)xy)

}
dx

+
∫ ∞
k

(1/6)x3 (x− k)√
2π (1 + (1/3)xy)7

exp
{
− x2

2 (1 + (1/3)xy)

}
dx

and hence

lim
y→0

h′ (y) =
∫ ∞
k

(
(1/6)x3 − (1/2)x

)
(x− k)φ (x) dx = (1/6) kφ (k) ,

which is the result presented in (c). By (7.14) we have lim
λ→∞

κ3S (θ) = 0 and hence

in view of Lemma 7.4(b) κ3S

(
θ̂
)

P→ 0 as λ→∞. Since

SLPapp
(
θ̂
)

SLPapp (θ)
=
σS

(
θ̂
)
h
(
κ3S

(
θ̂
))

σS (θ)h (κ3S (θ))
,

application of Lemma 7.4(b) together with (b) of the present lemma yields

SLPapp
(
θ̂
)

SLPapp (θ)
P→ φ (k)− kΦ (−k)
φ (k)− kΦ (−k)

= 1,

which is the result presented in (d). We have

∂

∂θi
SLPapp (θ) =

{
∂

∂θi
σS (θ)

}
h (κ3S (θ)) + σS (θ)h′ (κ3S (θ))

∂

∂θi
κ3S (θ) .

It is easily seen from (7.14) that the second term is of lower order, that is

lim
λ→∞

∂
∂θi
SLPapp (θ){

∂
∂θi
σS (θ)

}
h (κ3S (θ))

= 1 (7.16)

and similarly
∂
∂θi
SLPapp

(
θ̂
)

{
∂
∂θi
σS

(
θ̂
)}

h
(
κ3S

(
θ̂
)) P→ 1. (7.17)

Moreover, by Lemma 7.4(c)

∂
∂θi
σS

(
θ̂
)

∂
∂θi
σS (θ)

P→ 1. (7.18)



146 CHAPTER 7. ESTIMATION EFFECTS

Combining (7.16), (7.17) and (7.18) together with (b) from the present lemma
gives

∂
∂θi
SLPapp

(
θ̂
)

∂
∂θi
SLPapp (θ)

=

∂
∂θi

SLPapp(θ̂)n
∂
∂θi

σS(θ̂)
o
h(κ3S(θ̂))

∂
∂θi

SLPapp(θ)n
∂
∂θi

σS(θ)
o
h(κ3S(θ))

{
∂
∂θi
σS

(
θ̂
)}

h
(
κ3S

(
θ̂
))

{
∂
∂θi
σS (θ)

}
h (κ3S (θ))

P→ 1,

which completes the proof of the lemma. �

Lemma 7.6. Suppose that the assumptions and notations of Lemma 7.4 hold.
Then

(a) V aRapp (θ) = µS (θ)+t (κ3S (θ))σS (θ), where t (x) is the solution of g (x, t(x))
= 0 with

g(x, y) = Φ

(
y√

xy/3 + 1

)
+ e2(3/x)2Φ

(
−y − 6/x√
xy/3 + 1

)
− p,

(b) lim
x→0

g (x, y) = Φ (y)− p,

(c) lim
λ→∞

t (κ3S (θ)) = Φ−1 (p),

(d) lim
x→0

y→Φ−1(p)

gx (x, y) = − 1
6φ
(
Φ−1 (p)

){(
Φ−1 (p)

)2 − 1
}
,

lim
x→0

y→Φ−1(p)

gy (x, y) = φ
(
Φ−1 (p)

)
,

(e) lim
λ→∞

t′ (κ3S (θ)) = 1
6

{(
Φ−1 (p)

)2 − 1
}
,

(f) lim
λ→∞

V aRapp(θ)
µS(θ) = 1,

(g) lim
λ→∞

∂
∂θi

V aRapp(θ)
∂
∂θi

µS(θ)
= 1,

(h)
V aRapp(θ̂)
V aRapp(θ)

P→ 1,

(j)
∂
∂θi

V aRapp(θ̂)
∂
∂θi

V aRapp(θ)

P→ 1.

Proof. Using Lemma 7.1 we directly obtain (a). Obviously

lim
x→0

Φ

(
y√

xy/3 + 1

)
− p = Φ (y)− p. (7.19)
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Using
lim
y→∞

Φ (−y) y/φ (y) = 1 (7.20)

it is seen that

lim
x→0

e2(3/x)2Φ

(
−y − 6/x√
xy/3 + 1

)

=lim
x→0

e2(3/x)2φ

(
y+6/x√
xy/3+1

)√
xy/3 + 1

y + 6/x

=lim
x→0

e−
y2

2(1+xy/3)
√
xy/3 + 1

y + 6/x
= 0,

which together with (7.19) gives (b). The result in (c) follows from the definition
of t (κ3S (θ)), (b) of the present lemma and lim

λ→∞
κ3S (θ) = 0. Now consider

gx (x, y) = φ

(
y√

xy/3 + 1

)
∂

∂x

(
y√

xy/3 + 1

)

+e18/x2
Φ

(
−y − 6/x√
xy/3 + 1

)
∂

∂x

(
18
x2

)

+e18/x2
φ

(
−y − 6/x√
xy/3 + 1

)
∂

∂x

(
−y − 6/x√
xy/3 + 1

)
.

Using direct calculation

lim
x→0

φ

(
y√

xy/3 + 1

)
∂

∂x

(
y√

xy/3 + 1

)
= −φ (y) y2

6
. (7.21)

Using
Φ (−y) = φ (y) y−1

(
1− y−2 +O

(
y−4

))
as y →∞, we obtain

e18/x2
Φ

(
−y − 6/x√
xy/3 + 1

)
∂

∂x

(
18
x2

)
+ e18/x2

φ

(
−y − 6/x√
xy/3 + 1

)
∂

∂x

(
−y − 6/x√
xy/3 + 1

)

=e18/x2
φ

(
y + 6/x√
xy/3 + 1

)[√
xy/3 + 1
y + 6/x

(
1− xy/3 + 1

(y + 6/x)2 +O
(
x4
))

× ∂

∂x

(
18
x2

)
− ∂

∂x

(
y + 6/x√
xy/3 + 1

)]
=

1√
2π
e−

y2

2(1+xy/3)

[
36 (1 + xy/3)3/2

(xy + 6)3

+
3xy3/2

(xy + 6)(xy + 3)
√

3xy + 9
+O

(
x2
) ]
→ 1

6
φ (y)
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as x→ 0. Together with (7.21) we obtain

lim
x→0

gx (x, y) = −1
6
φ (y)

(
y2 − 1

)
and

gy (x, y) =φ

(
y√

xy/3 + 1

)
∂

∂y

(
y√

xy/3 + 1

)

+e18/x2
φ

(
−y − 6/x√
xy/3 + 1

)
∂

∂y

(
−y − 6/x√
xy/3 + 1

)

=φ

(
y√

xy/3 + 1

)
∂

∂y

(
y√

xy/3 + 1

)

−φ

(
y√

xy/3 + 1

)
∂

∂y

(
y + 6/x√
xy/3 + 1

)

=− φ

(
y√

xy/3 + 1

)
∂

∂y

(
6/x√
xy/3 + 1

)

=φ

(
y√

xy/3 + 1

)
(xy/3 + 1)−3/2 → φ (y) as x→ 0,

from which (d) follows directly. We know that

t′ (κ3S (θ)) = −gx (κ3S (θ) , t (κ3S (θ)))
gy (κ3S (θ) , t (κ3S (θ)))

.

Using (7.14) and (c) of the present lemma, we can write that

lim
λ→∞

t′ (κ3S (θ)) = lim
x→0

y→Φ−1(p)

− gx (x, y)
gy (x, y)

.

Using (d) of the present lemma, we directly obtain (e). By definition

V aRapp (θ) = µS (θ) + t (κ3S (θ))σS (θ) .

Using (7.14) and (c) of the present lemma, we obtain

lim
λ→∞

t (κ3S (θ))σS (θ)
µS (θ)

= 0,

from which (f) follows directly. We know that

∂V aRapp(θ)
∂θi

=
∂µS(θ)
∂θi

+ t′(κ3S(θ))
∂κ3S(θ)
∂θi

σS(θ) + t(κ3S(θ))
∂σS(θ)
∂θi

.
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Hence, using (7.14), (c) and (e) of the present lemma, we obtain

lim
λ→∞

t′(κ3S(θ))∂κ3S(θ)
∂θi

σS(θ) + t(κ3S(θ))∂σS(θ)
∂θi

∂µS(θ)
∂θi

= 0,

from which (g) follows directly. The results in (h) and (j) follow directly from
(f) and (g) of the present lemma and (b) and (c) of Lemma 7.4. �

Next we apply Theorem 7.3 in order to get an idea of the impact of the
estimators on the risk measures considered. As was mentioned before, the two
risk measures will be analyzed in simplified form. This form can be written as a
general linear function

RMapp1(µC , γC , µG, γG, ε, λ) = RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ (µC − µC0)
∂

∂µC
RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+ (λ− λ0)
∂

∂λ
RMapp(µC0, γC0, µG0, γG0, ε0, λ0),

where RM means risk measure and RMapp denotes its (first step cf. Section
7.2.1) approximation. Hence, by replacing RM with V aR or SLP we get formulas
(7.6) and (7.7), respectively. This is a convenient way to present the results in
general form. Later the concrete risk measures V aR and SLP will be presented
as illustrative examples.

The error due to estimation, divided by µC0, equals

µ−1
C0

{
RMapp1(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂)−RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

}
=
(
µ̂C − µC0

µC0

)
∂

∂µC
RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ (γ̂C − γC)µ−1
C0

∂

∂γC
RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+

(
λ̂− λ0

λ0

)
λ0µ

−1
C0

∂

∂λ
RMapp(µC0, γC0, µG0, γG0, ε0, λ0).

The asymptotic distribution of

µ−1
C0

{
RMapp1(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂)−RMapp(µC0, γC0, µG0, γG0, ε0, λ0)

}√
uλ0
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is obtained by application of Theorem 7.3 with

c1 =
∂

∂µC
RMapp(µC0, γC0, µG0, γG0, ε0, λ0),

c2 = µ−1
C0

∂

∂γC
RMapp(µC0, γC0, µG0, γG0, ε0, λ0),

c3 = ε
−1/2
0 µ−1

C0

∂

∂µG
RMapp(µC0, γC0, µG0, γG0, ε0, λ0), (7.22)

c4 = ε
−1/2
0 µ−1

C0

∂

∂γG
RMapp(µC0, γC0, µG0, γG0, ε0, λ0),

c5 = ε
1/2
0 µ−1

C0

∂

∂ε
RMapp(µC0, γC0, µG0, γG0, ε0, λ0),

c6 = µ−1
C0λ0

∂

∂λ
RMapp(µC0, γC0, µG0, γG0, ε0, λ0).

The result is a normal distribution with expectation 0 and variance τ2
1 + τ2

2 . This
variance should give an idea of the error due to estimation.

7.4 Estimation effect on SLP

This section discusses the estimation effect when SLP is the underlying risk mea-
sure. All the results which are presented in this section were demonstrated in
Albers and Kallenberg [2007]. Therefore, we will be brief here. We will start
with an example of the calculation of τ2

1 and τ2
2 . This should give an impression

of the estimation effect and point out the most important parameters from the
estimation point of view. We calculate τ2

1 and τ2
2 for (µC0, γC0, µG0, γG0, ε0, λ0) =

(100000, 0.7, 15, 0.8, 0.03, 400) and k = (a − µS)/σS = 1. The distributions of C
and L are assumed to be Gamma with (obviously) different input parameters.
In Section 7.2.2 we already saw that SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) =
292282. The values of c1, . . . , c6 are easily obtained from Table 7.4. We get

c21γ
2
C0 = 4.19

c1c2γ
2
C0 (κ3C0 − 2γC0) = 0

c22γ
2
C0

(
γ2
C0 + κ4C0/4 + 1/2− γC0κ3C0

)
= 0.18

and therefore

τ2
1 = 4.37.
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Using that L has a Gamma distribution, direct calculation gives κ3G = 2γG −
µ−1
G γ−1

G and κ4G = 6γ2
G − 6µ−1

G + µ−2
G γ−2

G . We obtain

c23µ
3
G0γ

2
G0 = 287.43

1
2
c24
(
µG0γ

4
G0 − γ2

G0 + µ−1
G0/2 + µG0γ

2
G0

)
= 265.21

c25 (1− ε0)
{
µG0 (1− ε0)

(
1 + γ2

G0

)
+ ε0

}
= 325.47

c26
{
µG0ε0

(
1 + γ2

G0

)
+ 1− ε0

}
= 2.84

− c3c4µG0γG0 = −25.91

2c3c5 (1− ε0)µ2
G0γ

2
G0 = 381.9

2c3c6
√
ε0µ

2
G0γ

2
G0 = 23.46

− c4c5γG0 (1− ε0) = −17.21
− c4c6γG0

√
ε0 = −1.06

2c5c6
√
ε0 (1− ε0)

{
µG0

(
1 + γ2

G0

)
− 1
}

= 38.31

and hence
τ2
2 = 1280.43.

This example is really illuminating. One of the conclusions of Albers and
Kallenberg [2007] was that the estimation error for SLP is dominated by the esti-
mation of the parameters related to the common risk, that is by estimating µG, γG
and ε. The reason is that we have a lot of observations for estimating µC and γC .
Typical values for u and λ are values like 7 and 400, respectively. That means
about 2800 observations to estimate the parameters of the common distribution
of C and D. Due to this large number of observations, these estimators are very
accurate. The same situation occurs with λ, as can be seen from the various terms
contributing to τ2

2 . The terms in which estimating λ is involved, that is the terms
where c6 appears, are much smaller that the other terms. Hence, in the sequel,
parameters µC , γC and λ are assumed to be known in case SLP is the underlying
risk measure. Using this assumption we formulate the following theorem.

Theorem 7.7. Let (µC0, γC0, µG0, γG0, ε0, λ0) be the true value of the parameters.
Then

SLP
(
µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂

)
≈ SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)

and

µ−1
C0

{
SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0)

− SLPapp1(µC0, γC0, µG0, γG0, ε0, λ0)

}
τ−1

√
uλ0ε0 → V
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as λ0 →∞, with V ∼ N (0, 1), in which

τ2 = c23µ
3
G0γ

2
G0

+c24µG0γ
2
G0

(
γ2
G0 − γG0κ3G0 + κ4G0/4 + 1/2

)
+c25 (1− ε0)

{
µG0 (1− ε0)

(
1 + γ2

G0

)
+ ε0

}
(7.23)

+c3c4µ2
G0γ

2
G0 (κ3G0 − 2γG0)

+2c3c5 (1− ε0)µ2
G0γ

2
G0

+c4c5µG0γ
2
G0 (1− ε0) (κ3G0 − 2γG0) ,

where

c3 = µ−1
C0

∂

∂µG
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0),

c4 = µ−1
C0

∂

∂γG
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0), (7.24)

c5 = ε0µ
−1
C0

∂

∂ε
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0).

Proof. The limiting result follows directly form Theorem 7.3, because

µ−1
C0 {SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− SLPapp1(µC0, γC0, µG0, γG0, ε0, λ0)}

=c3 (µ̂G − µG0) + c4 (γ̂G − γG0) + c5
ε̂− ε0
ε0

with c3, c4 and c5 given by (7.24). Note that in the formulation of the theorem
a different norming is used (i.e.

√
uλ0ε0 instead of

√
uλ0), because the expected

number of special claims equals uλ0ε0. The same norming is kept in Theorem 7.9
as well. �

The following theorem gives the asymptotic behavior of τ .

Theorem 7.8. Suppose that the assumptions and notations of Lemma 7.4 hold.
Then

τ̂

τ

P→ 1

as λ→∞ with τ = τ (θ) defined in (7.23) and τ̂ = τ
(
θ̂
)
.

Proof. Since estimators µ̂C , γ̂C , µ̂G, γ̂G and ε̂ are consistent and (cf. (7.15))
λ̂/λ

P→ 1, it is enough to show that

ci

(
θ̂
)

ci (θ)
P→ 1 (7.25)
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as λ→∞ for i = 3, 4, 5 (see (7.24)) and that the ci (θ) are all of the same exact
order for i = 3, 4, 5. Using the same arguments, (7.25) is true if

∂
∂θi
SLPapp

(
θ̂
)

∂
∂θi
SLPapp (θ)

P→1

as λ → ∞ for i = 3, 4, 5 (i.e. derivatives w.r.t. µG, γG and ε). Therefore,
application of Lemma 7.5(e) gives (7.25). It easily follows from (7.24), (7.16),
(7.14) and Lemma 7.5(b) that ci (θ) is of exact order λ1/2 for i = 3, 4, 5, which
completes the proof. �

Remark 7.4. Theorems 7.7 and 7.8 can be applied to G : P (L) with parametriza-
tion µL, γL (provided that the fourth moment of L is finite), replacing SLP (µ̂C , γ̂C ,
µ̂G, γ̂G, ε̂, λ̂), SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0) and SLPapp1(µC0, γC0, µG0, γG0,

ε0, λ0) by SLP (µ̂C , γ̂C , µ̂L, γ̂L, ε̂, λ̂), SLPapp1(µC0, γC0, µ̂L, γ̂L, ε̂, λ0) and
SLPapp1(µC0, γC0, µL0, γL0, ε0, λ0), respectively, and τ2 by

τ2 = c23(µ3
L0γ

2
L0 + µ2

L0)

+ c24

{
µL0γ

2
L0

(
γ2
L0 − γL0κ3L0 +

κ4L0

4
+

1
2

)

− γ2
L0 + γL0κ3L0 + 1 +

1
2
µ−1
L0 (1 + γ−2

L0 )

}
+ c25(1− ε0){µL0(1− ε0)(1 + γ2

L0) + 1} (7.26)

+ c3c4µ
2
L0γ

2
L0(κ3L0 − 2γL0)

+ 2c3c5(1− ε0)(µ2
L0γ

2
L0 + µL0)

+ c4c5µL0γ
2
L0(1− ε0)(κ3L0 − 2γL0),

where

c3 = µ−1
C0

∂

∂µL
SLPapp(µC0, γC0, µL0, γL0, ε0, λ0),

c4 = µ−1
C0

∂

∂γL
SLPapp(µC0, γC0, µL0, γL0, ε0, λ0), (7.27)

c5 = ε0µ
−1
C0

∂

∂ε
SLPapp(µC0, γC0, µL0, γL0, ε0, λ0).

�

7.4.1 Protection approach
So far we have presented a lot of formulas which can help in the analysis of
the estimation effect of SLP . The next step is to see the investigation of the
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impact of the estimation on the SLP , which originally was presented in Albers and
Kallenberg [2007]. We start with an example which clearly illustrates this aspect.
Let the true values of the parameters be equal to (µC0, γC0, µG0, γG0, ε0, λ0) =
(100000, 0.7, 15, 0.8, 0.03, 400) and k = (a− µS)/σS = 1. Let C and L each have
a (different) Gamma distribution. In Section 7.2.2 we saw that SLPapp(100000,
0.7, 15, 0.8, 0.03, 400) = 292282. The natural question which can arise having
these numbers is: what is the probability that SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0)
is smaller than (let us say) 200000, that is an error of more than 92282? To answer
such a question we apply Theorem 7.7. Direct calculation gives τ2 = 36.51 and
hence, with Φ the standard normal distribution function,

P (SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0) < 200000)

= P

(
10−5 {SLPapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− 292282} 36.51−1/2

√
12u

< 10−5 (200000− 292282) 36.51−1/2
√

12u

)
≈ Φ

(
−0.53

√
u
)
.

From the above formula we see that taking only one year, that is u = 1, the
estimated value is smaller than 200000 with a quite high probability of 30%. This
clearly illustrates that indeed one year is not enough. The reason for that is of
course lack of observations for µG, γG and ε. The expected number of groups in
the presented example is only ελ/µG = 12/15 = 0.8 which makes the estimation
of these parameters very inaccurate. If we take u = 7, the probability reduces
from 30% to 8% which is considered to be acceptable.

From the above example we see that the effect of estimation may be quite
large and we may want to control it. This can be done by using the protection
approach which originally was presented in Albers and Kallenberg [2007]. We
simply construct the confidence interval, in which SLP falls with some fixed
probability. The following theorem deals with such protection.

Theorem 7.9. Assume that Model 4 holds and that C and D are identically dis-
tributed with a Gamma, Inverse Gaussian or lognormal distribution. Let (µC0, γC0,
µG0, γG0, ε0, λ0) be the true values of the parameters. Then

lim
λ0→∞

P (SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) < UB(α)) = 1− α,

lim
λ0→∞

P (SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) > LB(α)) = 1− α,

lim
λ0→∞

P (LB(α/2) < SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) < UB(α/2)) = 1− α

with

UB(α) = SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) + Φ−1(1− α) (ε̂uλ0)−1/2
τ̂µC0,

LB(α) = SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− Φ−1(1− α) (ε̂uλ0)−1/2
τ̂µC0,



7.4. ESTIMATION EFFECT ON SLP 155

where τ̂ =
√
τ̂2 and τ̂2 is given in (7.23) and (7.24) with µG0, γG0, ε0 replaced by

their estimators µ̂G, γ̂G, ε̂ (also in c3, c4, c5, κ3G0 and κ4G0).

Proof. Application of Theorem 7.8 and Theorem 6.1 in Albers and Kallenberg
[2007] gives the result. �

Remark 7.5. Theorem 7.9 can be applied to G : P (L) with parametrization
µL, γL (provided that the fourth moment of L is finite), replacing SLPapp(µC0,
γC0, µG0, γG0, ε0, λ0) and SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) by SLPapp(µC0,
γC0, µL0, γL0, ε0, λ0) and SLPapp1 (µC0, γC0, µ̂L, γ̂L, ε̂, λ0), respectively, and τ̂2

by the estimated version of (7.26) and (7.27). �

As was already discussed, the contribution of estimating µC , γC and λ is very
small (compared to that of estimating µG, γG and ε) in case of SLP . Therefore,
in Theorem 7.9 again µC0, γC0 and λ0 are assumed to be known. In practice these
parameters obviously have to be replaced by their estimates in the formulas of
UB(α) and LB(α).

In Figures 7.1-7.3 some examples are presented of the extra amount due to
the protection against estimation and the effect of dependence in these situations.
Figures 7.1(a)-7.3(a) show the relative difference between the independent case
and the dependence one. Here we assume that C and L each have a (different)
Gamma distribution. We take γC0 = 0.4 or 1.2, µG0 = 5, 10 or 15, γG0 = 0.5 or
1, ε0 = 0.03 and λ0 = 400. The relative difference is defined by

SLP − SLPI
SLPI

=
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)− SLPapp (µC0, γC0, µG0, γG0, 0, λ0)

SLPapp (µC0, γC0, µG0, γG0, 0, λ0)
,

where SLP denotes the (approximated) SLP under dependence (Model 4) and
SLPI the (approximated) SLP under independence (Model 1). For a fair com-
parison we take both for the independence model and the dependence one the
same retentions

a = µS + kσSI

with k = 0, . . . , 3 and σSI = µC
√
λ (1 + γ2

C), the standard deviation of S for the
independence model (Model 1).

Figures 7.1(b)-7.3(b) show the extra amount due to protection against esti-
mation, also measured in a relative way by taking

UB(α)− SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

with in UB(α) the estimators µ̂G, γ̂G, ε̂ and τ̂ replaced by µG0, γG0, ε0 and
√
τ2,

respectively. We take α = 0.1 and u = 7. Note that both measures do not depend
on µC0.
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Figure 7.1: Dependence and estimation effects for SLP when µG = 5

Note that the order of the displayed cases is slightly different in the figures
a and b: for instance, for µG0 = 5 (Figures 7.1(a),(b)) the relative difference
between dependence and independence is higher for γC0 = 0.4, γG0 = 0.5 than
for γC0 = 1.2, γG0 = 1, while their order w.r.t. the relative extra amount due to
protection against estimation is reversed.

Figures 7.1-7.3 affirm that ignoring dependence may lead to very large errors
(up to 4300% in Figure 7.3). But also the additional step due to protection
against estimation is large (up to 138% in Figure 7.3). A numerical example may
illustrate this. Consider again the example with true values of the parameters
being equal to (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03, 400). By
taking k = 1 we have a = µS + σSI = 4 × 107 + 2561250 = 42561250. If we
ignore the dependence we get SLPapp (100000, 0.7, 15, 0.8, 0.03, 400) = 211277.
If we take into account the dependence without protection against estimation we
get SLPapp (100000, 0.7, 15, 0.8, 0.03, 400) = 382006. If we add the protection
(taking µ̂G = µG0 = 15, γ̂G = γG0 = 0.8, ε̂ = ε0 = 0.03, τ̂ =

√
τ2) we get

UB(0.1) = 476596.
The upper and the lower bounds UB(α) and LB(α) contain the term τ̂µC0.

It was already mentioned in the previous chapters of the thesis that µC is a
kind of dummy parameter. However, the expression of τ̂ has a quite complicated
structure. For illustrative purposes we show the behavior of τ2 as a function of
ε when (µC , γC , µG, γG, λ, k) = (100000, 0.7, 15, 0.8, 400, 1) are fixed. It is clearly
seen in Figure 7.4 that τ2 tends to 0 when ε → 0. This result is in line with
our expectations since τ2 is the variance of the asymptotic distribution of the
estimation error of µG, γG and ε, which are the parameters of the special part of
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Figure 7.2: Dependence and estimation effects for SLP when µG = 10

gammaC=0.4, gammaG=1
gammaC=0.4, gammaG=0.5
gammaC=1.2, gammaG=1
gammaC=1.2, gammaG=0.5

 

muG = 15

0

1000

2000

3000

4000

re
la

tiv
e 

di
ffe

re
nc

e 
(%

)

0.5 1 1.5 2 2.5 3
k

(a) Relative difference between depen-
dence and independence

gammaC=1.2, gammaG=1
gammaC=0.4, gammaG=1
gammaC=0.4, gammaG=0.5
gammaC=1.2, gammaG=0.5

 

muG = 15

20

40

60

80

100

120

140

re
la

tiv
e 

ex
tra

 a
m

ou
nt

 (%
)

0 0.5 1 1.5 2 2.5 3
k

(b) Relative extra amount due to esti-
mation

Figure 7.3: Dependence and estimation effects for SLP when µG = 15
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Figure 7.4: Behavior of τ2(µC , γC , µG, γG, ε, λ, k) as ε → 0 with
(µC , γC , µG, γG, λ, k) = (100000, 0.7, 15, 0.8, 400, 1) and k = (a− µS)/σS = 1

the model. By tending ε to 0 we decrease the special part of the model and it
disappears when ε = 0.

7.5 Estimation effect on V aR

This section deals with the estimation effect when the underlying risk measure
is V aR. Just as in the previous section, where SLP was the underlying risk
measure, we start the analysis with an example of the calculation of τ2

1 and
τ2
2 (see Theorem 7.3). This should give an impression of which parameters are
important from the estimation point of view. We fix (µC0, γC0, µG0, γG0, ε0, λ0) =
(100000, 0.7, 15, 0.8, 0.03, 400) and p = 0.99. Assume that C and L both have
(different) Gamma distributions. In that case V aRapp(µC0, γC0, µG0, γG0, ε0, λ0)
= 47861121. Using these assumptions we obtain τ1 = 335 and τ2 = 1303. To
get a feeling about the most important parameters we present all the calculation
terms separately (like it was done in the previous section for SLP ), starting with
the τ2

1 terms. They are
c21γ

2
C0 = 112244,

γ2
C0c1c2(κ3C0 − 2γC0) = 0,

γ2
C0c

2
2(γ2

C0 +
κ4C0

4
+ 0.5− γC0κ3C0) = 192,
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resulting in τ2
1 = 112436. It is clearly seen that the most important value comes

from the first term, and it is clearly not the γ2
C0, which is only 0.49. Hence c1 is

the dominating quantity in the τ1 calculation. Note that the absolute values of
τ1 and τ2 are much larger than the ones for SLP . This can be explained by the
fact that the absolute values of V aR itself are also larger than the values of SLP
while considering high quantiles.

The τ2
2 terms are

c23µ
3
G0γ

2
G0 = 203807,

c24µG0γ
2
G0

(
γ2
G0 − γG0κ3G0 + κ4G0/4 + 1/2

)
= 198061,

c25 (1− ε0)
{
µG0 (1− ε0)

(
1 + γ2

G0

)
+ ε0

}
= 212705,

c26
{
µG0ε0

(
1 + γ2

G0

)
+ 1− ε0

}
= 322550,

c3c4µ
2
G0γ

2
G0 (κ3G0 − 2γG0) = −18856,

2c3c5 (1− ε0)µ2
G0γ

2
G0 = 259971,

2c3c6
√
ε0µ

2
G0γ

2
G0 = 210567,

c4c5µG0γ
2
G0 (1− ε0) (κ3G0 − 2γG0) = −12026,

c4c6µG0γ
2
G0

√
ε0 (κ3G0 − 2γG0) = −9741,

2c5c6
√
ε0 (1− ε0)

{
µG0

(
1 + γ2

G0

)
− 1
}

= 330146,

resulting in τ2
2 = 1697184 Again, like in the SLP case, we see that τ2 is larger

than τ1. But now the difference between τ1 and τ2 is not so extremely large. Now
we see that

τ2(V aR)
τ1(V aR)

= 3.9,

while
τ2(SLP )
τ1(SLP )

= 17.

This indicates that the contribution of estimating µC and γC is larger for V aR
than for SLP . Additionally we see that estimation of λ gives a much higher
contribution here. Terms in which c6 is involved are much more important than
in the SLP case, even more than the remaining terms.

From the above analysis we conclude that the estimation error is dominated
by the estimation of µG, γG, ε and λ. Estimation of µC and γC gives more
contribution than in the SLP case, but µC and γC can still be considered as
known. Additional arguments for such a conclusion will be presented at the end
of the section.

In analogy with Theorem 7.7 we have the following result.

Theorem 7.10. Let V aR(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂) be the estimator of the Value at
Risk and (µC0, γC0, µG0, γG0, ε0, λ0) be the true value of the parameters. Then

V aR(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂) ≈ V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)
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and

µ−1
C0{V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)

− V aRapp1(µC0, γC0, µG0, γG0, ε0, λ0)}τ−1
2

√
uλ0 → V

as λ0 → ∞, with V ∼ N(0, 1), where τ2
2 is as given in Theorem 7.3, with the

coefficients c3, . . . , c6 defined in (7.22), replacing RMapp by V aRapp.

Proof. The result follows directly from Theorem 7.3 �

The following theorem gives the asymptotic behavior of τ2.

Theorem 7.11. Suppose that the assumptions and notations of Lemma 7.4 hold.
Then

τ̂2
τ2

P→ 1

as λ → ∞ with τ2 = τ2 (θ) defined in Theorem 7.3, with c3, c4, c5, c6 defined in
(7.22), replacing RMapp by V aRapp, and τ̂2 = τ2

(
θ̂
)
.

Proof. Using the fact that the estimators µ̂C , γ̂C , µ̂G, γ̂G and ε̂ are consistent
and (cf. (7.15)) λ̂/λ P→ 1, it is enough to show that

ci

(
θ̂
)

ci (θ)
P→ 1 (7.28)

as λ → ∞ for i = 3, 4, 5, 6 and that the ci (θ) are all of the same exact order for
i = 3, 4, 5, 6. Using the same arguments, (7.28) is true if

∂
∂θi
V aRapp

(
θ̂
)

∂
∂θi
V aRapp (θ)

P→1

as λ→∞ for i = 3, 4, 5, 6. Therefore, application of Lemma 7.6(j) yields (7.28).
It follows from (7.22) (with RMapp replaced by V aRapp), Lemma 7.6(g) and
(7.14) that ci (θ) is of exact order λ for i = 3, 4, 5, 6, which completes the proof.
�

Remark 7.6. Theorems 7.10 and 7.11 can be applied toG : P (L) with parametriza-
tion µL, γL (provided that the fourth moment of L is finite), replacing V aR(µ̂C , γ̂C ,
µ̂G, γ̂G, ε̂, λ̂), V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ0) and V aRapp1(µC0, γC0, µG0, γG0,

ε0, λ0) by V aR(µ̂C , γ̂C , µ̂L, γ̂L, ε̂, λ̂), V aRapp1(µC0, γC0, µ̂L, γ̂L, ε̂, λ0) and
V aRapp1(µC0, γC0, µL0, γL0, ε0, λ0), respectively, and τ2

2 by
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τ2
2 = c23(µ3

L0γ
2
L0 + µ2

L0)

+ c24

{
µL0γ

2
L0

(
γ2
L0 − γL0κ3L0 +

κ4L0

4
+

1
2

)
− γ2

L0 + γL0κ3L0 + 1 +
1
2
µ−1
L0 (1 + γ−2

L0 )
}

+ c25(1− ε0){µL0(1− ε0)(1 + γ2
L0) + 1}

+ c26{µL0ε0(1 + γ2
L0) + 1}

+ c3c4µ
2
L0γ

2
L0(κ3L0 − 2γL0) (7.29)

+ 2c3c5(1− ε0)(µ2
L0γ

2
L0 + µL0)

+ 2c3c6
√
ε0(µ2

L0γ
2
L0 + µL0)

+ c4c5µL0γ
2
L0(1− ε0)(κ3L0 − 2γL0)

+ c4c6µL0γ
2
L0

√
ε0(κ3L0 − 2γL0)

+ 2c5c6µL0
√
ε0(1− ε0)(1 + γ2

L0).

where

c3 = ε
−1/2
0 µ−1

C0

∂

∂µL
V aRapp(µC0, γC0, µL0, γL0, ε0, λ0),

c4 = ε
−1/2
0 µ−1

C0

∂

∂γL
V aRapp(µC0, γC0, µL0, γL0, ε0, λ0), (7.30)

c5 = ε
1/2
0 µ−1

C0

∂

∂ε
V aRapp(µC0, γC0, µL0, γL0, ε0, λ0),

c6 = µ−1
C0λ0

∂

∂λ
V aRapp(µC0, γC0, µL0, γL0, ε0, λ0).

�

7.5.1 Protection approach

Using these results we formulate the protection theorem, the analogue of which
was introduced for SLP in the previous section. However, the main idea we would
like to illustrate by means of an example.

Let the true values of the parameters be equal to (µC0, γC0, µG0, γG0, ε0, λ0)
=(100000, 0.7, 15, 0.8, 0.03, 400) and p = 0.99. As usual we assume that C and L
have a (different) Gamma distribution. As we have seen before, V aRapp(100000,
0.7, 15, 0.8, 0.03, 400) =47861121 in that case. Like in the case of SLP , we can
be interested in the probability that V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂) is smaller
than 43861121, which means an error of more than 4000000. To calculate such a
probability we use the above stated theorem.
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P (V aRapp1(µC0, γC0,µ̂G, γ̂G, ε̂, λ̂) < 43861121)

= P (µ−1
C0{V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)− 47861121}20× 1303−1

√
u

<µ−1
C0{−4000000}20× 1303−1

√
u) ≈ Φ(−0.614

√
u).

From this example we can see that by taking u = 1, we get an estimated value
smaller than 43861121 with a probability of 27%. By increasing the number of
years we can reduce this probability. For instance, taking u = 7, the mentioned
probability is only 5%.

Inspired by this example we formulate the following theorem.

Theorem 7.12. Assume that Model 4 holds and that C and D are identically dis-
tributed with a Gamma, Inverse Gaussian of lognormal distribution. Let (µC0, γC0,
µG0, γG0, ε0, λ0) be the true value of the parameters. Then

lim
λ0→∞

P (V aRapp(µC0, γC0, µG0, γG0, ε0, λ0) < UB(α)) = 1− α,

lim
λ0→∞

P (V aRapp(µC0, γC0, µG0, γG0, ε0, λ0) > LB(α)) = 1− α,

lim
λ0→∞

P (LB(α/2) < V aRapp(µC0, γC0, µG0, γG0, ε0, λ0) < UB(α/2)) = 1− α,

with

UB(α) = V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂) + Φ−1(1− α)(uλ̂)−1/2τ̂2µC0,

LB(α) = V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)− Φ−1(1− α)(uλ̂)−1/2τ̂2µC0,

where τ̂2 =
√
τ̂2
2 and τ̂2

2 is given in Theorem 7.3, with the coefficients c3, . . . , c6
defined in (7.22), replacing RMapp by V aRapp1 and µG0, γG0, ε0, λ0 by their es-
timators µ̂G, γ̂G, ε̂, λ̂ (also in c3, . . . , c6, κ3G0 and κ4G0).

Proof. Application of Theorems 7.10 and 7.11 yields

(τ̂2µC0)−1

{
V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)

− V aRapp1(µC0, γC0, µG0, γG0, ε0, λ0)

}√
uλ0 → U

with U ∼ N (0, 1) . Hence, writing temporary V̂ = V aRapp1(µC0, γC0, µ̂G, γ̂G,

ε̂, λ̂) and noting that V aRapp(µC0, γC0, µG0, γG0, ε0, λ0) = V aRapp1(µC0, γC0,
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µG0, γG0, ε0, λ0), we obtain, using λ̂/λ0
P→ 1 (cf. (7.15)),

P (V aRapp(µC0, γC0, µG0, γG0, ε0, λ0) < UB (α))

= P
(
V aRapp1(µC0, γC0, µG0, γG0, ε0, λ0) < V̂ + Φ−1(1− α)(uλ̂)−1/2τ̂2µC0

)
= P

(
(τ̂2µC0)−1

{
V̂ − V aRapp1(µC0, γC0, µG0, γG0, ε0, λ0)

}√
uλ̂

> −Φ−1(1− α)

)
→ P

(
U > −Φ−1(1− α)

)
= 1− α,

thus giving the first result. The other statements are obtained in a similar way.�

Figure 7.5: τ2/τ1 as a function of p

Remark 7.7. Theorem 7.12 can be applied to G : P (L) with parametrization
µL, γL (provided that the fourth moment of L is finite), replacing V aRapp(µC0,
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γC0, µG0, γG0, ε0, λ0) and V aRapp1
(
µC0, γC0, µ̂G, γ̂G, ε̂, λ̂

)
by V aRapp(µC0,

γC0, µL0, γL0, ε0, λ0) and V aRapp1
(
µC0, γC0, µ̂L, γ̂L, ε̂, λ̂

)
, respectively, and τ̂2

2

by the estimated version of (7.29) and (7.30). �

Note that in the theorem we assume that µC0 and γC0 are known. At a first
glance this can look a bit strange. We saw that τ2/τ1 = 3.9 for V aR. This means
that the contribution of estimating µC and γC is more than in the SLP case,
which could suggest to include the influence of µC and γC . Moreover, Figure 7.5
illustrates that a similar situation (when τ1 is large, comparing to τ2) is present
in a quite wide range of p. All this can suggest to include τ1 in the calculation.
However, our region of interest are probabilities p > 0.9, where the quantity τ2/τ1
grows very fast. This makes τ1 not so significant while considering large quantiles.

To check whether τ1 has a strong influence on the final result, we calculate
UB(α) for α = 0.1, u = 7, µC0 = 100000, and ε̂ = 0.03, τ̂2 = 1303, λ̂ = 400. Then
Φ−1(1− α)(uλ̂)−1/2τ̂2µC0 = 3155741 and V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)
=47861121. We see that the Φ−1(1 − α)(uλ̂)−1/2τ̂2µC0 part is about 6.6% (in
the SLP case we had about 30% assuming the same parameters values) of the
V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂) value. Including the influence of estimating µC
and γC (taking τ̂1 = 335) the relation becomes

Φ−1(1− α)(uλ̂)−1/2
(
τ̂2
2 + τ̂2

1

)1/2
µC0

V aRapp1(µC0, γC0, µ̂G, γ̂G, ε̂, λ̂)
= 0.068.

Hence, the estimation impact of µC and γC is not large, compared to the basic
value of V aR (only 0.2%). Therefore, it still can be neglected, like it was done in
the SLP case. However, while in Theorem 7.10 µC0, γC0 are assumed to be known,
in practice these parameters obviously have to be replaced by their estimates in
the formulas of UB(α) and LB(α).

In Figures 7.6-7.8 some examples are presented of the extra amount due to
the protection against estimation and the effect of dependence in these situations.
Figures 7.6(a)-7.8(a) show the relative difference between the independent case
and the dependence one. Here we assume that C and L each have a (different)
Gamma distribution. We take γC0 = 0.4 or 1.2, µG0 = 5, 10 or 15, γG0 = 0.5 or
1, ε0 = 0.03 and λ0 = 400. The relative difference is defined by

V aR− V aRI
V aRI

=
V aRapp (µC0, γC0, µG0, γG0, ε0, λ0)− V aRapp (µC0, γC0, µG0, γG0, 0, λ0)

V aRapp (µC0, γC0, µG0, γG0, 0, λ0)
,

where V aR denotes the (approximated) V aR under dependence (Model 4) and
V aRI the (approximated) V aR under independence (Model 1). For a fair com-
parison we take both for the independence model and the dependence the same
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set of quantiles
0.5 ≤ p ≤ 0.09995.

Figures 7.6(b)-7.8(b) show the extra amount due to protection against estimation,
also measured in a relative way by taking

UB(α)− V aRapp (µC0, γC0, µG0, γG0, ε0, λ0)
V aRapp (µC0, γC0, µG0, γG0, ε0, λ0)

with in UB(α) (which is obviously the one from Theorem 7.10) the estimators
µ̂G, γ̂G, ε̂ and τ̂2 replaced by µG0, γG0, ε0 and

√
τ2
2 , respectively. We take α = 0.1

and u = 7.
Note that the order of the displayed cases is slightly different in the figures

a and b: for instance, for µG0 = 15 (Figures 7.8(a),(b)) the relative difference
between dependence and independence is lower for γC0 = 0.4, γG0 = 0.5 than for
γC0 = 1.2, γG0 = 1, while their order w.r.t. the relative extra amount due to
protection against estimation is reversed.
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Figure 7.6: Dependence and estimation effects for V aR when µG = 5

Figures 7.6-7.8 affirm that ignoring dependence may lead to very large abso-
lute errors. But also the additional step due to protection against estimation is
large. Sometimes even larger than the dependence effect. Figure 7.6 clearly illus-
trates this situation. The dependence effect reaches only 2% in the tail while the
estimation effect reaches 8% under the same scale. Such situations are not in line
with the SLP case where the dependence effect is usually much larger than the
estimation effect. This can be explained by differences in fluctuation of the un-
derlying risk measures. It is obvious that the estimated parameters are the same
in both cases. Therefore, the main role here play the coefficients c1, . . . , c6, which
contain partial derivatives of the risk measures w.r.t. estimated parameters.
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Figure 7.7: Dependence and estimation effects for V aR when µG = 10
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Figure 7.8: Dependence and estimation effects for V aR when µG = 15

We already saw that these coefficients are different for V aR and SLP in
absolute and even in relative sense, comparing to the values of the risk measures.
For instance we saw that c26

{
µG0ε0

(
1 + γ2

G0

)
+ 1− ε0

}
= 2.84 in case of SLP

(which is only 0.00097% of the underlying SLP value) and equals 322550 in case
of V aR (which is 0.67% of the underlying V aR value). Clearly, such a great
relative difference stems from c6, which means that the fluctuation of V aR w.r.t.
λ is much larger then the fluctuation of SLP . A similar (maybe less extreme)
situation exists with the remaining parameters. This explanation gives an idea
why the estimation impact is so (relatively) large in the case of V aR, compared
to SLP and shows that it is useful to study the behavior of the risk measures and
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the behavior of the estimators separately, as has been done in Sections 7.2 and
7.3.

To conclude we present the following results for the example with the true
values of the parameters being equal to (µC0, γC0, µG0, γG0, ε0, λ0) =(100000, 0.7,
15, 0.8, 0.03, 400), p = 0.99 and C and L each having a (different) Gamma dis-
tribution. If we ignore the dependence, we get V aRapp = 45825083. If we
take into account the dependence without protection against estimation we get
V aRapp(100000, 0.7, 15, 0.8, 0.03, 400) = 47861120. If we add the protection (tak-
ing ε̂ = 0.03, λ̂ = 400 and τ̂2 = τ2) we get UB(0.1) = 51016282. Again, the
protection and the dependence steps are very huge in absolute sense. The relative
difference is not large, about 4% for the dependence step and about 6% for the
protection. In total the result is an increase of about 10%. Compared to SLP
this is not large. For high retentions such an increase for SLP can reach hun-
dreds percents. However, we should not forget that high retentions in the SLP
calculation produce low values of SLP . The situation with V aR is the other
way around. The values of V aR increase with p and therefore significance of the
dependence effect and the estimation effect in terms of relative difference should
not be considered on the same scale as with SLP .
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Figure 7.9: Behavior of τ2(µC , γC , µG, γG, ε, λ, p) as ε → 0 with
(µC , γC , µG, γG, λ, p) = (100000, 0.7, 15, 0.8, 400, 0.99)

The upper and the lower bounds UB(α) and LB(α) contain the term τ̂2µC0.
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It was already mentioned in the previous chapters of the thesis that µC is a kind
of dummy parameter. However, the expression of τ̂2 has a quite complicated
structure. For illustrative purposes we show the behavior of τ̂2 as a function
of ε when (µC , γC , µG, γG, λ, p) = (100000, 0.7, 15, 0.8, 400, 0.99) are fixed. It is
seen in Figure 7.9 that τ̂2 does not tend to 0 when ε → 0. This is because τ2
is the standard deviation of the asymptotic distribution of the estimation error
of µG, γG, ε and λ, which are the parameters of the special and simple part of
the model. By tending ε to 0 we decrease the special part of the model and it
disappears when ε = 0. However, some influence is left from the simple part which
enters to the standard deviation through λ.



Chapter 8

Fire data

This chapter deals with data obtained from Bert Teeuwen (Nationale Nederlan-
den), one of the members of the users committee of our STW-project. The main
goals are analysing the data, trying to fit our model distributions and finding
ways to determine dependencies within the data. The main structure which we
need the data to have in order to be able to set up the model, has already been
described in Chapter 6. A couple of examples presented there gave a basic feeling
for possible dependence structures inside the data. It was demonstrated how the
dependence groups can be defined using the information available. In this chapter
we perform more or less the same procedure, but use a different strategy.

The chapter is divided into several sections. The first section is a description
of the data, where the main features and examples of the data are presented. Next
follows the section on the number of claims, which is the most important section
of the chapter. Here we try to distinguish the small number of special claims from
among the huge amount of the simple ones. Then follows the claim sizes section,
where we fit the claim size distributions of the model. As soon as we assume the
same distribution for simple and special claims, this step can be performed by
using standard statistical analysis. The last section discusses the dependence and
estimation effects on SLP and V aR on the basis of the estimated parameters.

8.1 Description of the data

We start with the description of the data, presenting the information which can
be obtained without deep analysis. The data corresponds to a collection of claims
during five years (2003.01.01-2007.12.17). Note that the year 2007 is present
only partly, i.e. only 338 days are available for the analysis. The name of the
data set is ’fire’, which gives an idea about the line of the insurance business to
which the data set corresponds. This concerns non-life insurance which covers
different types of damages (excluding car accidents). The total number of claims
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during these years is 39079. All claims are positive. The information which is
presented (fields in the table) is OORZAAK (type of the damage), SCHAJR
(year of the claim), SCHAMND (month of the claim), SCHADAG (day of the
claim), BETAALD (claim size), NUMMER (number of the claim, starting from
2003.01.01), POSTCODE (area where the claim occurred). In total there are
1799 days for which claims are present. It is easily noted that one particular
day contains a huge amount of claims. This is 2007.01.18, which stands for 1409
claims. Such a day can be considered as a catastrophe. There was a windstorm
during that day and a huge amount of claims arose. Obviously, here we have a
classical example of a dependence which in principle can be covered by our model
as well. However, our main interest in this thesis is aimed at small dependencies
and showing that these cannot be neglected at all. Therefore, all the claims which
occurred on 2007.01.18 will be excluded from our analysis, decreasing the total
number of days to 1798. Table 8.1 presents a small sample from the data (when
SCHAJR is 2003) as an example. It can be noted that the POSTCODE field
contains the numbers of two symbols. These are the two first numbers of the
usual postcodes in the Netherlands. In total there are 90 postcodes with numbers

SCHAMND SCHADAG OORZAAK POSTCODE BETAALD
1 1 84 25 34.01
1 1 31 21 46.19
1 1 21 14 51.5
1 1 89 22 59.94
1 1 89 52 68.65

Table 8.1: Example of the ’fire’ data

10, 11, . . . , 98, 99. The OORZAAK field contains types of claims, denoted by
different codes. In total there are 23 codes which can be divided into 7 groups:
(11, 12, 13, 14) corresponds to fire claims which include fire, explosion, melting
and singeing, (21, 22, 23, 24, 25) corresponds to different types of theft as burglary,
theft, absence, theft form car, small thefts, (31, 32) corresponds to drains (and
frost) and precipitation, (41, 42) denotes collision and smoke, (51) is storm, (61)
denotes various, (83, 84, 85, 86, 87, 88, 89) is glass.

8.2 Number of claims

This section deals with the most important part of the model, the number of
claims during the reference period. As soon as we assume the same distribution
for the simple and special claims sizes, the number of claims becomes the major
aspect through which dependence is introduced. As was already mentioned, the
total number of claims can be divided into two groups: simple (which is modeled
by random variable N) and special (which is modeled as a sum

∑H
k=1Gk, where
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H is the number of dependence groups and Gk are the group sizes). Therefore,
the main goal is to recognize and distinguish these two types of claims. To do
this, we group the data according to some feature. There are several grouping
possibilities: time grouping (where different groups correspond to the different
dates), space grouping (where groups are created according to the geographical
position), type of the claim grouping (where claims are grouped using the type of
claim field) and all combinations of these three types (for instance time and space).
Each type of grouping corresponds to different special causes. For instance, in
the time grouping the special cause can be the new year, Christmas, or other
festive occasions which can lead to a larger number of claims (different damages,
fires, etc.), compared to the remaining part of the year. In the space grouping
the special cause can be ’bad’ neighborhoods, in which numbers of claims are
higher, not because of the larger number of clients living there, but because of
some special feature of the neighborhood itself (for instance in student areas we
can expect larger number of claims than in senior-living sectors). However, to
perform the space grouping we need a bit more information. Namely, we need
a total number of clients for each postcode. This is necessary to make all the
postcodes equally important. This can be achieved by introducing weights which
would define significance of the postcode depending on the number of clients which
live there.

8.2.1 Time grouping

We start with the time grouping where different groups are formed according
to year, month and day. As a result, we get a number of claims for each day,
starting with 2003.01.01 and finishing with 2007.12.17, excluding the catastrophe
day 2007.01.18. Hence, in total 1798 data points. The main goal now is to
divide all the claims into simple and special. We proceed as follows: first we
determine the ’suspicious’ days, the days where the number of claims is not in
line with the overall picture. These days will be considered later as special days
(the days which include special claims). The next step is the analysis of only the
simple days, trying to fit some distribution there and estimating the underlying
parameters. Next, to obtain the number of special claims during the special day
we generate (from the distribution estimated before) total number of simple claims
for each special day and randomly subtract these claims from the total number of
claims during the special day. Assuming that for each special day we have only
one group, the expected group size and the standard deviation can be obtained
straightforwardly.

To obtain a feeling about the suspicious days we construct the normal Q-
Q plot for the daily claims, taking only one year 2003 (hence 365 data points in
total) (see Figure 8.1). It can be seen that almost all the data lie on one line which
indicates that these are ’more or less’ normal data, but on the other hand, there is
a breakpoint at the end which starts a new line with a different slope. Therefore,
we can suppose that the data come from two different normal distributions.
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Figure 8.1: Normal Q-Q plot for the daily claims data

−3 −2 −1 0 1 2 3−5

0

5

10

15

20

25

30

35

40

Normal quantiles

D
at

a 
qu

an
til

es

Figure 8.2: Normal Q-Q plot for the random variates of two different normal
distributions

Indeed, as an example we present a normal Q-Q plot of a generated sample of
365 random variates, 355 of which are N(10, 52) and 10 are N(30, 52) (see Figure
8.2). It can be noted that these two pictures are similar in a sense that in both
of them there is a breakpoint which intuitively divides all the data into two parts
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stemming from different normal distributions. In case of the ’fire’ data, it is clear
that the suspicious (or special) days have larger numbers of claims. Therefore
we assume that the number of claims during the special days come from the
distribution with the larger (than during the simple days) mean. To make life
more simple, we assume that the number of claims during the simple and special
days follow normal distributions with different means. This normality assumption
will be checked more carefully later in this chapter.

8.2.1.1 Simple claims

We start with determining the simple days, the days which do not contain any
special claims. For this we will use the Q-Q plot data. First of all we construct
the normal Q-Q plot of the data considered. Denoting the total number of ob-
servations by n, we create a plot with normal quantiles xi = Φ−1 (i/(n+ 1)) on
the x-axis and with the ordered data points Yi on the y-axis. As a result we get
a sequence of observations

(x1, y1), . . . , (xn, yn).

The next step is to fit the simple linear regression to all the data points, assuming
the usual form

Yi = β0 + β1xi + ηi,

with as estimates for β0 and β1:

β̂1 =
∑n
i=1 (xi − x) (yi − y)∑n

i=1 (xi − x)2 and β̂0 = y − β̂1x.

The usual assumption for the errors ηi is the normal distribution N
(
0, σ2

)
. Since

most days are simple and the whole sample is ordered in ascending order, we can
hope that the regression line mostly describes the simple data points. Therefore,
the next step is to construct the one-sided 95% confidence interval for the mean
response when x = x0. This will define the data points which do not belong to
the expected majority, as described by the regression. The confidence distance is
defined by

t0.95,n−2σ̂

√
1
n

+
(x0 − x)2∑n
i=1 (xi − x)2 ,

where

σ̂ =

√∑n
i=1 (yi − ŷi)2

n− 2

and t0.95,n−2 is the corresponding quantile of the t-distribution. All the points
which are above the confidence bound will be considered as special data points
(which obviously are the special days). The next step is to fit the above described
linear regression, excluding the points which were determined as special during
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Figure 8.3: Confidence intervals for the regression of the normal Q-Q plot of the
random variates of two different normal distributions. Result of two iterations of
the method

the previous step. The construction of the confidence bound for that regression
can single out more special points, since now the sample of the data considered
contains more simple points compared to the special ones and the regression fits
them better. These points also have to be excluded from the simple days. The
process is continued until all the special days are excluded, i.e. until exclusion
of the special point and construction of a new confidence bound do not give any
new special points. As a result we get a regression line which fits only the simple
days. All the data points which are below the confidence bound are considered
to be simple.

As an example, we illustrate the method on the data of the random variates
from two different normal distributions: N

(
10, 52

)
(from which we generate 355

points) and N
(
30, 52

)
(from which we generate 10 points). The normal Q-Q

plot of that data is presented in Figure 8.2. Two iterations have distinguished 10
special points which is in line with the number of outliers which were included
in the sample. Figure 8.3 presents the final result: the linear regression which
corresponds to the simple points only, the upper confidence bound and 10 outliers
which are denoted by circles.

To make sure that this is not a chance result, we perform a brief simulation
study. By taking different number of outliers and different mean distances we
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Figure 8.4: Simulation result when the number of N
(
30, 52

)
outliers is 10 and

the number of the simple N
(
10, 52

)
points is 355

simulate the method and check whether the expected number of outliers is in
line with the real amount. An example of such a simulation can be found in
Figure 8.4. It can be easily seen that the expected number of outliers converges
to a number which is quite close to 10, which is in line with the real number of
outliers. Analysing the simulation results resulted in further conclusions, related
to the mean distance between the simple and special points. The distance between
the means should not be too low, as in that case it is impossible to distinguish the
special and simple points by using the above described method. Simulation results
showed that in order to ’catch’ the outliers, the distance in mean should be not
lower than 15 (for fixed σ = 5) and even then, slight underestimation is possible.
The larger the distance in means, the easier the outliers can be distinguished.
The good news is that this type of restriction is reasonable for our purposes and
hence the method can be applied. We will use it as the main tool in distinguishing
the simple and special claims. Of course, it should be noted that the approach
stays rather heuristic (or intuitive). The lack of knowledge about the underlying
structure undermines the possibilities for a more thorough theoretical analysis.

We proceed as follows. Having the five year of data, we consider each year
separately and use the above described method to distinguish the suspicious days,
which will be considering as special days, containing the special claims. The re-
sults are presented in Table 8.2. The next step is to estimate the distribution of
the number of claims for the simple days for each year (special days will be ex-
cluded from the analysis). It was already mentioned that this distribution will be
assumed to be normal. To illustrate that this is indeed a reasonable assumption,
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Year Total number of days Nr. of simple days Nr. of special days
2003 365 341 24
2004 366 330 36
2005 365 333 32
2006 365 343 22
2007 338 313 25

Table 8.2: Number of simple and special days of the fire data during several years
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Figure 8.5: Several distributions are fitted to the simple days of the fire data

we compare several fits of the different distributions. As an illustrative example
we consider year 2003. Figure 8.5 illustrates the fits of several distributions. It
can be noted that the normal distribution is the best one. Moreover, it is also a
good one. This can be concluded from the probability plot, Figure 8.5(b). For
each year we fit a normal distribution to the data. Parameter estimates can be
found in Table 8.3.

8.2.1.2 Special claims

Having obtained the estimated distributions of the number of claims for simple
days for different years, we can start distinguishing the numbers of special claims
during the suspicious days. The point is that each suspicious day can contain
both simple and special claims. It is impossible to distinguish these using the
claim size, since we assume that the simple and special claim sizes follow the
same distribution. Therefore, to get the number of special claims during the
suspicious days, we generate a total number of claims per simple day for each of
the suspicious ones and subtract this from the total number of claims.

Having the number of special days for 5 years (see Table 8.2), we start the
procedure. Table 8.4 presents the results, which basically are all we need for the
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Year µ̂ σ̂

2003 23.3 7.95
2004 21.34 7.26
2005 17.95 6.16
2006 16.9 6.33
2007 11.04 5.56

Table 8.3: Parameter estimates of the normal distribution of the simple days for
different years

u Htot Ntot Gtot G G2

5 139 30212 4969 36 1761

Table 8.4: Time grouping results

estimation of the parameters of the number of claims. Now, using the estimators
which were presented in Chapter 7, we calculate the estimates of the parameters

µ̂G = 36, λ̂ = 7036, ε̂ = 0.14, γ̂G = 0.6.

We see that some estimates are larger than we expected at the beginning of the
analysis. Moreover, they are out of the region of interest which was introduced
in order to check the accuracy of the approximations. The estimate of λ is 7036
instead of 400, which was assumed before. However, this is not a problem since
it was shown that the accuracy of the approximations becomes better when λ
increases. Here the estimate of λ is 17.59 times larger than 400. For this reason
we should not much worry about the larger values of the estimates of µG and ε,
which earlier were assumed to be 20 and 0.03.

One more remark should be made about the estimates. In Chapter 7 it is as-
sumed that both Nt and Ht (t = 1, . . . , u) follow a Poisson distribution. However,
here it turned out that Nt is fitted well by a normal distribution. In spite of this
fact the estimators which were introduced in Section 7.1 can still be used here
since these are ’natural’ estimators of the parameters.

8.2.2 Space grouping
One more type of grouping we consider here is the space grouping. In the previous
section the time grouping approach was described where the special cause was
some event in time, for instance Christmas, New Year, or some other festive
occasion which can lead to a larger number of claims (different damages, fires,
etc.), compared to the remaining part of the year. In the space grouping the
special cause can be ’bad’ neighbourhoods (or other space areas), in which the
number of claims is higher, not because of the larger number of clients living
there, but because of some specific feature of the area itself. For instance in
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Year Nr. of suspicious postcodes Suspicious postcodes
2003 3 (10, 25, 68)
2004 8 (10, 25, 68, 79, 29, 49, 30, 56)
2005 3 (10, 68, 25)
2006 3 (68, 10, 25)
2007 5 (68, 49, 70, 10, 25)

Table 8.5: Suspicious postcodes

student areas we can expect larger number of claims compared to living sectors
with mainly seniors.

Having 90 POSTCODES in total (remember that only the first two digits are
available), we calculate the total number of claims for each postcode for each
year. However, before starting the procedure of distinguishing the special claims,
we have to make all the areas equally important. The problem is that the total
number of policies for different postcodes is also different and hence the larger
number of claims in some postcode does not directly mean that it is special.
Therefore, for the analysis we consider not the total number of claims but the
fraction of total number of claims to the total number of policies for each postcode.

The procedure of distinguishing special claims stays the same. It was explained
in detail in the previous section. The only difference here is the grouping strategy
and the introduction of the weights. The suspicious postcodes are presented in
Table 8.5. Note that the postcodes 10, 25 and 68 in the table are present in each
of the years.

The next step in the procedure is to distinguish the special claims from the
total number of claims for the suspicious postcodes. However, we see that the
number of the special postcodes (and hence the number of the dependence groups)
is small, ranging from 3 to 8. We could expect this, since the total number of
postcodes is only 90. This fact significantly complicates the estimation proce-
dure: it is practically impossible to get reasonable estimates of the underlying
parameters from only three numbers. We have to change the grouping strategy
and the most logical way is to use postcodes which are not aggregated, i.e. to
consider smaller areas. However, this information is not available: the postcodes
in the data are presented in aggregated form w.r.t. first two numbers and it is
impossible to split them. For illustration purposes we could split the postcodes
ourselves, according to some strategy. However, this type of approach was already
considered in Chapter 6. Here we will prefer to stick to the real data.

Another possibility is to consider mixture grouping. There are two possibil-
ities: space-time grouping and space-claim type (or space-cause) grouping. We
do not consider space-cause grouping, since different claim types definitely have
different expected group sizes (according to different special causes). This as-
pect is covered by the overdispersion approach which is covered by the model.
Since we still would like to concentrate on space, we consider space-time grouping
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Figure 8.6: Normal distribution is fitted to the number of simple claims in different
space-time grouping points

or, more precisely, space-half a year grouping (space and two equal parts of the
year). Such a strategy certainly splits the data into more points (compared to
only space grouping) and preserves space as the main special cause. Probably
one of the parts of the year could be considered as the special and some groups
can occur due to the special feature of the part, not the postcode. However, we
assume that both parts are equally important which makes space the main special
cause.

Table 8.6 presents the results of the first step of the procedure. Here we distin-
guish suspicious grouping points. Note that the postcodes which were defined as
suspicious during the postcode grouping stay suspicious here as well. Moreover,
three postcodes which were pointed out due to their occurrence in each year, con-
tain special claims in both parts for all the years except 2007 (probably because
we do not have data for the whole year 2007), which indeed makes them essentially
independent from the time aspect. This result is in line with our expectations.

The next step is to distinguish the special claims within the total number
of claims of the suspicious points. As was mentioned before, we consider not
the number of claims itself, but the fraction of the total number of claims to
the total number of policies per postcode and for this reason normal distributions
(instead of Poisson) will be fitted to these fractions. Figure 8.6 illustrates that the
normal distribution provides a reasonable assumption for the fraction of simple
claims in different grouping points. The fitting results are presented in Table 8.7.
Hence, instead of the number of special claims we get the fractions of the special
claims to the total number of policies. To get the number of special claims, we
should multiply the fractions by the total number of policies of the corresponding
postcode. The method of finding the number of special claims was described in
detail in the previous section. Here we present only the final result, the estimates
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Year Total Special µ̂ σ̂

2003 267 14 0.42 0.21
2004 264 23 0.4 0.18
2005 263 14 0.35 0.17
2006 263 10 0.33 0.16
2007 257 6 0.3 0.21

Table 8.7: Fitting results during the space-time grouping

of the model parameters which deal with the number of claims. They are

µ̂G = 107, λ̂ = 7035, ε̂ = 0.2, γ̂G = 0.86.

Again, we see that some estimates are larger than we expected. Moreover, as in
the time grouping case, they are out of the region of interest which was introduced
in order to check the accuracy of the approximations. The estimate of λ is 7035
instead of 400, which was assumed before. However, as was already mentioned in
the previous section, this is not a problem since it was shown that the accuracy
of the approximations becomes better when λ increases. Here the estimate of λ is
17.59 times larger than 400. For this reason we should not much worry about the
larger values of the estimates of µG and ε, which earlier were assumed to be 20
and 0.03. Note that the estimate of µG is much larger than the value obtained for
the case of time grouping. This fact can be explained by the grouping strategy.
Our assumption is that each grouping point can have only one dependence group.
Hence, by considering higher grouping aggregation, we automatically consider
larger groups, but the number of groups becomes smaller. This also can be seen
from the formula of the expected number of groups, which is ελ/µG.

The same (as in the previous section) remark about the estimates is applicable
here as well. In Chapter 7 it is assumed that both Nt and Ht (t = 1, . . . , u) follow
a Poisson distribution. Here Nt is introduced through the fractions and a Poisson
distribution becomes a poor assumption. However, it turned out that the fractions
are fitted well by a normal distribution. In spite of this fact the estimators which
were introduced in Section 7.1 can still be used here since these are ’natural’
estimators of the parameters.

8.3 Claim sizes
The goal of this section is to find a reasonable distribution which fits the individual
claim sizes of the fire data. Each claim here is considered as a separate data
point and the total number of such points is 38990. It was already mentioned
that in our analysis we assume that special and simple claim sizes follow the
same distribution. Hence, we do not need any information about the dependence
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(a) Claim sizes from 0 to 1000
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(b) Claim sizes from 1000 to 5000
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(c) Claim sizes from 5000 to 40000

0.5 1 1.5 2 2.5
x 106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8x 10−7

Claim sizes

N
or

m
al

iz
ed

 fr
eq

ue
nc

ie
s

(d) Claim sizes from 40000 to 2265342.5

Figure 8.7: Histogram of the fire data

structure and consider all the claim sizes together, as one sample. There is also
no need to divide the data according to different years since in the parameters
estimation procedure all the years will be aggregated anyway.

We will start with plotting the histogram and the empirical mean excess func-
tion of the data. This should give us an impression about the main features of
the underlying distribution. The maximum claim size during these five years is
2265342.5 EUR and the minimum one is 0.01 EUR. The scale is too wide to
present the histogram of the data in one picture. Therefore we divide it into four
parts. The four histograms are presented in Figure 8.7. In general the histogram
plot provides a means of assessing the symmetry and variability of the data. If the
data are symmetric, then the structure of the histogram plot will be symmetric
around a central point such as a mean. The histogram plot also indicates if the
data are skewed and the direction of the skewness. In our case we see that the
data are not symmetric and are skewed to the right. We also see that the tail of
the underlying distribution is heavy. Additional evidence for that we present by
using the empirical mean excess function plot (see Figure 8.8). When considering
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Figure 8.8: Empirical mean excess function of the fire data

the shapes of mean excess functions, the exponential distribution plays a central
role. The mean excess function for the exponential distribution is constant. If
the distribution of the underlying data is heavier-tailed than the exponential dis-
tribution, the mean excess function ultimately increases, when it is lighter-tailed
it ultimately decreases. In our case the empirical mean excess function increases
and its shape is similar to the mean excess function of the lognormal distribution.
Therefore, in the fitting process we should try heavy-tailed distributions which
are skewed to the right. There are many distributions with such characteristics.
However, we will limit ourselves to only three of them, namely the Gamma, In-
verse Gaussian and lognormal (see Table 3.2). The whole model theory and the
approximations were developed and tested extensively in the foregoing chapters
for these three representative distributions. To introduce more distributions, the
whole analysis would have to be performed from the very beginning, which would
take too much time. Moreover, these distributions are commonly used as an as-
sumption for the claim sizes in the insurance business and we already saw that
the shape of the empirical mean excess function is similar to the mean excess
function of the lognormal distribution. All this indicates that we are going in the
right direction.

Using the estimators which were presented in Chapter 7, we get the estimates
for µC and γC , which are

µ̂C = 2894.19, γ̂C = 9.3.

The estimates of the parameters of the distributions considered are presented
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Distribution α̂ β̂

Gamma 0.0116 4× 10−6

Lognormal 5.74 2.11
Inverse Gaussian 2894.19 250132.37

Table 8.8: Estimates of the parameters of the fitting candidates

Grouping method λ̂ ε̂ µ̂G γ̂G µ̂C γ̂C

Time 7036 0.14 36 0.6 2894.19 9.3
Space-time 7035 0.2 107 0.86 2894.19 9.3

Table 8.9: Estimates of the model parameters

in Table 8.8. To judge the goodness of fit we first check how the estimated
densities fit the histogram of the data. Once more, the results are presented as
four pictures with different scales (see Figure 8.9). A lot of information can be
obtained already from the first picture. Here we basically are interested in the
concentration of the density at small values. Figure 8.9(a) shows that the Gamma
distribution gives a very bad fit. In fact the parameters are very extreme, leading
to e.g.

∫ 1

0
fγ(x; α̂, β̂)dx = 0.87, while we have only 11 observations out of 38990

in [0, 1], thus showing that the fit is very bad. The Inverse Gaussian distribution
is also not very good. Here we have

∫ 100

0
fIG(x; α̂, β̂)dx = 0.57, i.e. more than

half of the density is concentrated at the very beginning (interval [0, 100]) where
we have only 2769 out of 38990 observations (about 7%). The lognormal is the
best one, but here we also have

∫ 100

0
fLN (x; α̂, β̂)dx = 0.25.

Using the above arguments we conclude that lognormal distribution fits the
data best, compared to Gamma and Inverse Gaussian distributions.

8.4 Examples and discussion

This section deals with the illustration of the dependence and estimation effects
on the basis of the risk measures SLP and V aR. The two methods of grouping
which were considered in this chapter gave us two different sets of the parameters
estimates. For the summary of the estimates we refer to Table 8.9. For each of
these sets we will illustrate and discuss the dependence and the estimation effects
which were already defined in Chapters 6 and 7.

However, before presenting the results we discuss the fact that the distribu-
tion of the number of claims which was estimated from the data turned out to be
Normal, not Poisson (as was assumed beforehand). This means that in principle
Model 4 (as well as Models 1-3) can not be applied immediately. To match the
data with the basic assumption of Model 4, we should change the model assump-
tion of the number of claims. Such a replacement is more or less straightforward
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(c) Claim sizes from 5000 to 40000
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Figure 8.9: Comparison of the estimated densities and the histogram
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and does not introduce any new features to the model. However, it means a huge
amount of technical work, starting with changing the formulas for the cumulants
and finishing with rewriting Chapter 7. All of this program can be done along the
same lines as for Model 4. We are not going to do it here, but this is a useful sug-
gestion for the extension of the model. Note that when changing the assumptions
of Model 4, we should also change the assumptions of Model 1, in order to keep
the models on the same scale. However, the Poisson assumption for the number
of claims is very classical in the insurance world. That explains why Poisson was
taken as a basic assumption for the number of claims and that is why such an
approach is still the one of main interest. After all, the main target of interest is
not the aggregated sum itself and even not the underlying risk measures. In the
present thesis we are basically concentrated on the dependence and estimation
effects, which are relative quantities. Possibly, the change of assumption for the
number of claims may have a strong influence on the aggregated sum and the un-
derlying risk measures under both models, but we may hope that the dependence
and estimation effects will be similar for both assumptions. Therefore, in this
chapter we will continue to use the assumptions of Model 4 which were originally
introduced in Chapter 3.

8.4.1 Dependence and estimation effects

Having two sets of the estimated parameters, we calculate SLP and V aR under
the two models (Model 1 (independence model) and Model 4 (dependence model))
for each set. The dependence effect for SLP or V aR is defined as the relative
difference of these risk measures w.r.t. the independence and dependence models,
while the estimation effect is defined as the relative extra amount which has
to be added to the risk measure as a protection against the estimation error.
Approximations which were introduced in Chapter 4 will be used as the main
tool in the calculation of SLP and V aR. As usual, the retention level for SLP is
a = µS1+kσS1 , with k = 0, . . . , 3. The illustrative range of probabilities for V aR is
p = 0.9, . . . , 0.9995. Using the conclusion of the previous section the distribution
of C is assumed to be lognormal, which is in line with the model assumption
which were introduced beforehand. The next step is to choose the assumption for
L. Here the choice is limited to the Inverse Gaussian and Gamma distributions.
We know that the assumption L ∼ Gamma(αL, βL) leads to G ∼ NB(αL, βL),
which in principle can be presented as a sum of αL independent random variables
having a geometric distribution with parameter βL. In that case the Central
Limit Theorem states that G is approximately normal when the summation index
is large. The analysis of the data showed that the normal distribution fits the
number of simple claims best. The original formulation of the model assumes
that the number of simple claims and the group sizes follow the same distribution
with different levels of dispersion. Therefore L ∼ Gamma should be a reasonable
choice which keeps our model and the data in line.

Figure 8.10(a) presents the dependence effect for SLP under the two sets of
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parameter estimates. The two lines here correspond to two different types of
grouping, which have led to two different sets of model parameters (see Table
8.9). We see that the dependence effect here is not so huge in a relative sense
(about 60% at maximum) if compared to the examples constructed before (see
e.g. Figure 7.3(a)) where it reaches almost 4300%. However, it is still very
large. Moreover, as was stated before, we should not blindly concentrate on the
relative difference. Absolute difference definitely has to be taken into account
as well and the following example clearly illustrate that situation. The absolute
differences at the most illustrative points are denoted on the figures by AD. At
k = 3 we have AD = 40250 in case of the space grouping correspondingly to
a dependence effect of 38%. We compare this result to the example which is
illustrated on Figure 7.3(a). There we have AD = 43077 at the same retention
level and this is in that situation a dependence effect of 4300%. The similar
situation holds for the whole picture, including the time grouping situations. We
note that the dependence effect under the time grouping is less than in case of the
space grouping. However, this fact is not a surprise since it could be predicted
from the values of the model parameters (see Table 8.9). Values of ε, µG and
γG are larger in case of the space grouping which (according to the discussion of
Section 3.3) makes the dependence effect larger as well. We note also that the
dependence/estimation effect for SLP is decreasing with the retention level. Up
to now almost all the examples have illustrated the opposite situation when the
dependence effect increases with the retention level. However, this is certainly
not the case in general. Moreover, we already saw (see e.g. Figures 7.1(a),7.2(a)
and 7.3(a)) that growth of the dependence effect is much slower when the ratio
of γC/γG is large. In the mentioned example we had at most γC/γG = 2.4 which
made the growth of the dependence effect slower (compared to the remaining
situations) for all the considering values of µG. In our case we have γ̂C/γ̂G = 15.5
in case of the time grouping and γ̂C/γ̂G = 10.8 in case of the space grouping.
This is much more than 2.4 and that could be a reason for the negative slope of
the dependence/estimation effect.

Figure 8.10(b) illustrates the estimation effect for SLP under the time and
space grouping. We see that the estimation effect is about 10 times smaller that
the dependence effect. This fact is in line with our expectations. Similar results
were presented before (see e.g. Figure 7.1(b)). For high retention levels the
estimation effect is not significant compared to the dependence effect, especially
in case of the time grouping. However, at lower retentions it definitely should be
taken into account.

Figure 8.11 illustrates the dependence and estimation effects on the basis of
V aR. Here we see that the dependence effect is smaller in the relative sense,
compared to the SLP case. This is not a surprise since similar results were
obtained before. However, the absolute difference here runs into the millions,
which makes it not so insignificant. As was expected, the dependence effect in
case of the time grouping is less, compared to the space grouping. Additional
attention should be attracted by the estimation effect which is comparable to
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Figure 8.10: Dependence and estimation effects for SLP . Notation ’AD’ stands
here for ’absolute difference’
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(and sometimes even larger than) the dependence effect. Similar situations can
be observed in Figures 7.6-7.8. In our case we see that for high risk levels the
dependence effect becomes comparably small, even negative, while the estimation
effect is still huge, even in the time grouping case.



Chapter 9

Review and discussions

This chapter contains the review of the thesis. Starting from the first chapter,
we will briefly discuss the main goals, the most important conclusions and (if
necessary) recommendations for future development.

The present thesis considers an advanced actuarial modeling technique which
introduces dependence as a natural extension of the existing independence mod-
els. The structure of dependence considered here, together with the classical
ways of insurance modeling, is briefly introduced in Chapter 1. The (so called)
dependence model has gone through several development steps (the main ones we
have pointed out by calling them Model 1, Model 2 and Model 3) before reaching
the final form (Model 4), which is the main target of investigation of the the-
sis. Chapter 1 briefly discusses all these development steps, introduces the risk
measures, discusses the approximation aspect and different kinds of influences
on the risk measures considered. In the present research we mostly concentrate
on the distribution of the aggregate sum of claims S, which usually is far from
normally distributed, i.e. not symmetric and having a heavy tail. Therefore the
risk measures which concern the tail behavior of the distributions involved, are
of main interest. The net Stop-Loss premium (SLP ), the variance of the Stop-
Loss contract and the Value at Risk (V aR) were chosen as representative risk
measures.

The form of dependence introduced in the thesis is quite new and differs con-
siderably from the structures available in literature. Therefore, all assumptions
and generalizations of the model have to be motivated. This aspect is covered in
Chapter 2, which is devoted to an illustrative example of a possible dependence
structure. The idea was to create an algorithm which would simulate some con-
crete dependence pattern, illustrating the needed features which are hidden in
the available data sets. Such features are mostly connected to the distributional
assumptions of the random variables which appear in the model (see (1.9)). In
Model 4 the distributional forms of N and H have been settled in Chapter 1.
These are N ∼ P (λ(1− ε)) and H ∼ P (λε/µG). Candidates for the distribution

191
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of C (and D) are presented in Section 1.2. Finally, G is assumed to be P (L),
where L is random. All these distributional assumptions are motivated in Chap-
ter 2, where we mostly concentrate on the distributions of N,H and G, since
these concern the new aspect of our model. Representative samples of these ran-
dom variables were obtained by simulating a flu epidemic inside a hypothetical
company (for the algorithm see Section 2.1). The samples obtained were analyzed
and possible candidates were suggested for the distributions of each of the random
variables considered. The Poisson distribution showed a very good fit while the
samples from N and H were considered. However, the analysis of the samples
from G did not point out a leader among the candidates considered. Nevertheless,
several important conclusions about the distribution of G were obtained while an-
alyzing the data. These are the positive skewness (between 3 and 4) and large
kurtosis (about 14). The negative binomial distribution was suggested for the dis-
tributional assumption of G in view of some of its properties which significantly
simplify application of the model.

Chapter 3 describes Model 4 in more detail, presents its main characteristics,
discusses the impact of the model parameters (see Section 3.3) and describes the
region of interest for the values of the parameters involved (see Tables 3.8 and
3.7).

Calculation aspects are covered in Chapter 4. There we present several calcu-
lation methods for the chosen risk measures. These are convolutions, approxima-
tions and simulations. The major calculation tool which is used while analyzing
dependence and estimation effects is the approximation. The methods of convo-
lutions and simulations are used in the approximation testing procedure, which
is the main topic of Chapter 5. Here we carefully analyze the chosen approxima-
tions, introduce the retention level for SLP (and the variance of the Stop-Loss
contract) and the representative probabilities for V aR. All decisions about the
accuracy of the approximations are based on the chosen criterion, which is de-
fined in (5.1) and (5.2). As a result, we present a rule of thumb for Model 4. The
general recommendation is to use the Gamma-IG approximation for the SLP and
the variance of the Stop-Loss contract approximation and the IG approximation
for the V aR approximation when the aggregated sum S is modelled by Model 4.
This rule is valid in the given region of parameters of interest, which is presented
in Table 3.7 and restricted to the distributions under consideration, which are
presented in Table 3.2. The schematic overview of the rule of thumb for Model 4
is presented in Table 5.3.

In Chapter 6 we present an explicit example of the dependence effect. The
example concerns a concrete line of the insurance business, the so-called workers
compensation insurance. The underlying data of this branch of insurance perfectly
fit our model (dependence structure is present) and, moreover, it was suggested
by the users committee of our STW-project as a potential source of problems
due to dependence. However, the needed structure is not present in the available
data. Therefore, it serves only as a basis for the construction of the data set
needed. Hence, real data are not used in this chapter, but compared to Chapter
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2 (where the dependence problem was invented by ourselves and all data were
simulated) here we go a step further, since real data are the starting point. This
contributes to the reality aspect of the example. Another goal of the chapter is to
discuss the structure of the data which is needed for the Model 4 implementation.
To get a better feeling about the requirements for the data, we present several
examples of data sets. The first example is the "perfect" data set, where all the
necessary information is included (see Table 6.2). It is "perfect" in the sense that
we directly have all the information about the groups and the claim amounts. By
using the "Group code" field we can get all the information about the groups:
the number of groups and the group sizes during the reference period. The main
problem is that usually a field "Group code" is not available in the data set. In
that case it should be possible to create this type of field from the existing data
and available extra information about the data. We present an example of such
a possibility. In Table 6.3 the "Group code" field is created from the "Date",
"Incident" and "Place" fields (in general, it can be a much more complicated
structure). Individual claims are denoted by 0, as in the previous example. In
case several accidents of the same type happened at the same date and at the
same place, we assume that they form one dependence group.

All the results are presented in Tables 6.7 and 6.9. Table 6.10 presents the
comparison of all the quantities considered. From that table we directly see that
the SLP under Model 4 is much higher than the one under Model 1 in a relative
sense and that this difference becomes huge for high retention levels. It means
that the expected risk of selling the Stop-Loss contract is much higher than we
expected while believing in Model 1. In case the premium is determined according
to the standard deviation principle, the dominant quantity in the premium is
not the SLP but the standard deviation. In spite of the fact that the relative
difference in standard deviation according to different models is smaller (but still
huge) than in case of the SLP , the absolute values are much larger (see Tables
6.7 and 6.9). Also there is a huge difference in a relative sense between the second
moments of the contract (quantity (S − a)+). For the highest retention level it
could reach a factor 380 (38000%). This definitely means that the tail of the
contract distribution can be much heavier than we expected using Model 1. All
this shows that the supposed rare events are not so rare after all and thus can
cause a lot of troubles for the (re)insurer.

The relative difference in V aR between the two models is much smaller than in
case of the SLP or its standard deviation. However, it is clear that the absolute
differences of V aR are much larger than the ones of the SLP or the standard
deviation, which makes a factor like 0.17, see Table 6.10, still very significant.
Therefore, the general conclusion is to consider both the relative and the absolute
difference.

As usual in stochastic modeling, all the parameters which are involved in the
model considered, have to be estimated. Replacing the unknown model parame-
ters by their estimates (which are usually obtained from the data) will result in
estimation errors. Just as with ignoring the dependence effect, it is too optimistic
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to act as if the estimation errors are negligible, unless the number of observations
is large. This topic, the effect of the estimation step, is exactly the issue which is
addressed in Chapter 7. We start with discussing the observations and defining
the estimators of the model parameters, which summary is presented in (7.1).

The influence of the estimators on the considered insurance products (mea-
sures) certainly depends on their behavior as a function of the parameters µC , γC ,
µG, γG, ε, λ, which are going to be estimated, as well as on the accuracy of the esti-
mators. For instance, if SLP is a flat function of the parameters µC , γC , µG, γG, ε,
λ and the estimators are accurate, the small changes due to the estimation will
have not much effect. So, these two points have to be considered: how fluctuate
the quantities considered (V aR and SLP ) and how accurate are the estimators.
The first aspect is covered in Section 7.2. Tables 7.4 and 7.2 give some impres-
sion about the order of magnitude of the model parameters by considering their
partial derivatives at (µC0, γC0, µL0, γL0, ε0, λ0) =(100000, 0.7, 15, 0.8, 0.03, 400),
assuming that C and L follow (different) Gam-
ma-distributions. The second aspect is covered in Section 7.3. There we dis-
cuss the asymptotic behavior of the estimators which later is used in the anal-
ysis of the estimation effect and construction of the confidence bounds for the
risk measures considered. The asymptotics are considered w.r.t. λ, which is
assumed to tend to infinity. That seems to be the natural way, because λ is
the total expected number of claims, that is the expected number of observa-
tions. The other parameters are assumed to be fixed. To measure the esti-
mation effect we calculate confidence intervals for the risk measures considered.
The bounds of these intervals are considered to offer protection against estima-
tion. In Figures 7.1-7.3 some examples are presented of the extra amount due
to the protection against estimation and the effect of dependence on the basis
of SLP . These figures affirm that ignoring dependence may lead to very large
errors (up to 4300% in Figure 7.3). But also the additional step due to protec-
tion against estimation is large (up to 138% in Figure 7.3). A numerical example
illustrates this. Consider again the example with true values of the parameters
being equal to (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03, 400). By
taking k = 1 we have a = µS + σSI = 4 × 107 + 2561250 = 42561250. If we
ignore the dependence we get SLPapp (100000, 0.7, 15, 0.8, 0.03, 400) = 211277.
If we take into account the dependence without protection against estimation we
get SLPapp (100000, 0.7, 15, 0.8, 0.03, 400) = 382006. If we add the protection
(taking µ̂G = µG0 = 15, γ̂G = γG0 = 0.8, ε̂ = ε0 = 0.03, τ̂ =

√
τ2) we get

UB(0.1) = 476596.
The estimation effect on V aR is analyzed in the similar way. In Figures 7.6-7.8

some examples are presented of the extra amount due to the protection against
estimation and the effect of dependence on the basis of V aR. These figures affirm
that ignoring dependence may lead to very large absolute errors. But also the
additional step due to protection against estimation is large. Sometimes even
larger than the dependence effect. Figure 7.6 clearly illustrates this situation.



195

The dependence effect reaches only 2% in the tail while the estimation effect
reaches 8% under the same scale. Such situations are not in line with the SLP
case where the dependence effect is usually much larger than the estimation effect.
This can be explained by differences in fluctuation of the underlying risk measures.
It is obvious that the estimated parameters are the same in both cases. Therefore,
the main role here play the coefficients c1, . . . , c6, which contain partial derivatives
of the risk measures w.r.t. estimated parameters. These coefficients are different
for V aR and SLP in absolute and even in relative sense, comparing to the values
of the risk measures. For instance c26

{
µG0ε0

(
1 + γ2

G0

)
+ 1− ε0

}
= 2.84 in case of

SLP (which is only 0.00097% of the underlying SLP value) and equals 322550 in
case of V aR (which is 0.67% of the underlying V aR value). Clearly, such a great
relative difference stems from c6, which means that the fluctuation of V aR w.r.t.
λ is much larger then the fluctuation of SLP . A similar (maybe less extreme)
situation exists with the remaining parameters. This explanation gives an idea
why the estimation impact is so (relatively) large in the case of V aR, compared
to SLP and shows that it is useful to study the behavior of the risk measures and
the behavior of the estimators separately, as has been done in Sections 7.2 and
7.3.

To conclude we present the following results for the example with the true
values of the parameters being equal to (µC0, γC0, µG0, γG0, ε0, λ0) =(100000, 0.7
,15,0.8,0.03,400), p = 0.99 and C and L each having a (different) Gamma dis-
tribution. If we ignore the dependence, we get V aRapp = 45825083. If we
take into account the dependence without protection against estimation we get
V aRapp(100000, 0.7, 15, 0.8, 0.03, 400) = 47861120. If we add the protection (tak-
ing ε̂ = 0.03, λ̂ = 400 and τ̂2 = τ2) we get UB(0.1) = 51016282. Again, the
protection and the dependence steps are very huge in absolute sense. The rela-
tive difference is not large, about 4% for the dependence step and about 6% for
the protection. In total the result is an increase of about 10%. Compared to
SLP this is not large. For high retentions such an increase for SLP can reach
hundreds of percents. However, we should not forget that high retentions in the
SLP calculation produce low values of SLP . The situation with V aR is the other
way around. The values of V aR increase with p and therefore significance of the
dependence effect and the estimation effect in terms of relative difference should
not be considered on the same scale as with SLP .

Chapter 8 deals with the real data obtained from Bert Teeuwen (Nationale
Nederlanden), one of the members of the users committee of our STW project.
The main goal is the data analysis, as illustration of the model implementation: in
particular finding ways to determine dependencies within the data and illustration
of the dependence and estimation effects.

As soon as we assume the same distribution for the simple and special claims
sizes, the number of claims becomes the major aspect through which dependence
is introduced. As was already mentioned, the total number of claims can be divi-
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ded into two groups: simple (which is modeled by the random variable N) and
special (which is modeled as a sum

∑H
k=1Gk, where H is the number of depen-

dence groups and Gk are the group sizes). Therefore, the significant challenge is
to recognize and distinguish these two types of claims.

The number of simple claims is determined as follows. First of all we con-
struct the normal Q-Q plot of the data considered. Denoting the total number of
observations by n, we create a plot with normal quantiles xi = Φ−1 (i/(n+ 1)) on
the x-axis and with the ordered data points Yi on the y-axis. As a result we get
a sequence of observations (x1, y1), . . . , (xn, yn). The next step is to fit the simple
linear regression to these data points. Since most points are simple and the whole
sample is ordered in ascending order, we can hope that the regression line mostly
describes the simple data points. Therefore, the next step is to construct the
one-sided 95% confidence interval for the mean response when x = x0. This will
define the data points which do not belong to the expected majority, as described
by the regression. All the points which are above the confidence bound will be
considered as special data points. The next step is to fit the above described
linear regression, excluding the points which were determined as special during
the previous step. The construction of the confidence bound for that regression
can single out more special points, since now the sample of the data considered
contains more simple points compared to the special ones and the regression fits
them better. These points also have to be excluded from the simple points. The
process is continued until all the special points are excluded, i.e. until exclusion
of the special points and construction of a new confidence bound do not give any
new special points. As a result we get a regression line which fits only the simple
points. All the data points which are below the confidence bound are considered
to be simple.

Having obtained the estimated distributions of the number of claims for simple
groups, we can start distinguishing the numbers of special claims during the sus-
picious groups. The point is that each suspicious group can contain both simple
and special claims. It is impossible to distinguish these using the claim size, since
we assume that the simple and special claim sizes follow the same distribution.
Therefore, to get the number of special claims in the suspicious group, we gener-
ate a total number of claims in a simple group for each of the suspicious ones and
subtract this from the total number of claims.

Table 8.9 presents the estimation results of time and space grouping. We see
that some estimates are larger than we expected at the beginning of the analysis.
Moreover, they are out of the region of interest which was introduced in order
to check the accuracy of the approximations. The estimate of λ is 7036 instead
of 400, which was assumed before. However, this is not a problem since it was
shown that the accuracy of the approximations becomes better when λ increases.
Here the estimate of λ is 17.59 times larger than 400. For this reason we do not
much worry about the larger values of the estimates of µG and ε, which earlier
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were assumed to be 20 and 0.03. We also note that two different ways of grouping
give different estimates of the expected number of groups and the group sizes.
Basically it means that the values of SLP and V aR depends on the grouping
strategy and (as illustrated in Figures 8.10 and 8.11) the difference can be quite
large. This is not a very pleasant result since this makes it difficult to give a
clear practical advice. It is clear that the reason for this is hidden in the lack
of the information about the dependence in the data. Ideally (as was mentioned
in the earlier parts of the thesis), the data should have a clear structure and in
particular, allow identification of special causes and resulting claims. However,
that was not the case in our situation which forced us to develop methods for
the identification of the special claims. Hence, this result serves as yet another
argument to strive for satisfactory data, from which results can be obtained in a
more or less confident way.

One more remark should be made about the fact that the distribution of the
number of claims which was estimated from the data turned out to be Normal,
not Poisson (as was assumed beforehand). In Chapter 7 it is assumed that both
Nt and Ht (t = 1, . . . , u) follow a Poisson distribution. However, here it turned
out that Nt is fitted well by a normal distribution. In spite of this fact the
estimators which were introduced in Section 7.1 can still be used here since these
are ’natural’ estimators of the parameters. However, this fact can cause more
trouble while calculating the risk measures. In principle Model 4 (as well as
Models 1-3) cannot be applied immediately. To match the data with the basic
assumption of Model 4, we should change the model assumption of the number of
claims. Such a replacement is more or less straightforward and does not introduce
any new features to the model. However, it means a huge amount of technical
work, starting with changing the formulas for the cumulants and finishing with
rewriting Chapter 7. All of this program can be done along the same lines as
for Model 4. We are not doing it here, but this is a useful suggestion for the
extension of the model. Note that when changing the assumptions of Model 4,
we should also change the assumptions of Model 1, in order to keep the models
on the same scale. However, the Poisson assumption for the number of claims is
very classical in the insurance world. That explains why Poisson was taken as
a basic assumption for the number of claims and that is why such an approach
is still the one of main interest. After all, the main target of interest is not the
aggregated sum itself and even not the underlying risk measures. In the present
thesis we are basically concentrated on the dependence and estimation effects,
which are relative quantities. Possibly, the change of assumption for the number
of claims may have a strong influence on the aggregated sum and the underlying
risk measures under both models, but we may hope that the dependence and
estimation effects will be similar for both assumptions.

As concerns the estimation of the distribution of C, the results here are not
perfect as well. The lognormal distribution showed the best fit while compared
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with Gamma and Inverse Gaussian, but generally speaking the fit is not perfect
(see Section 8.3). However, the lognormal distribution is a very common assump-
tion for the claim sizes in the insurance world. Therefore it was considered as
satisfactory and for the parameter estimation a parametric approach was used.
Nevertheless, we can avoid the distributional assumption on C by considering a
nonparametric approach. While believing in our approximations, we need only
µS , σS , κ3S , κ4S to get the values of the risk measures considered. Using Lemma
3.3 we can express these quantities in terms of the first four moments of C and
L. As soon as we have many observations for C we can apply nonparametric
estimators. However, for L we still need to make a distributional assumption
(Gamma), because we do not have many observations for estimation in the case
of special claims. In that case the calculation method can be considered as semi-
parametric. This approach was not considered in the present thesis and hence is
presented here as a recommendation for future research and development.



Appendix A

Convolutions calculation
algorithms

In this section we will describe in detail the most important calculation difficul-
ties (and their solutions) which occurred when applying the convolution formulas
presented in Chapter 4. All examples and remarks will be given on the basis of
the C++ programming language. There are several reasons to use C++ for all
the calculations.

The main one is computing time. The method of convolutions is based on
summation, where each summand itself has a very complicated structure. A huge
number of operations has to be performed for each summand separately, which
will certainly be very time consuming in the higher level languages (software) like
MAPLE or Visual Basic. Even MATLAB did not offer fast calculation speed. To
give some impression on C++ calculation speed, the same SLP was computed in
MAPLE and C++. The MAPLE calculation time was 7 hours while C++ did
the same job in 10 seconds. In some situations MAPLE did not come up with an
answer within 3 days while C++ managed to do it in 2 minutes. MAPLE has
the clear advantage of having a large library of numerical algorithms, but there
are no references on which algorithms are used precisely, which also hides the
information about the calculation accuracy. In C++ all numerical algorithms used
were programmed by ourselves. This was a large and very time consuming job,
which unfortunately remains hidden from the reader. But it allows us to control
the calculation process by specifying the calculation accuracy, which sometimes
can be very important.

Another reason to use the C++ language is the possibility of independent
application. If the program is written in MAPLE or MATLAB, the person who
wants to use the program, has to have this software. C++ allows to create a
separate application which can be used independently or as a function in another
software (like Excel). This is important for the non-mathematical organizations
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like insurance companies which probably do not have the above mentioned math-
ematical software. Basically it would be very nice to have C++ speed and Excel
"user friendly" appearance in one place.

The structure of this section will be similar to the one used in the body of
the thesis. Under the different model assumptions, we have different convolution
formulas which have to be programmed in C++. Each of the following sections
contains the calculation algorithms under one of the various model assumptions.

A.1 Situation when C ∼ Gamma and L ∼ Gamma

This part contains the application algorithm for the formula (A.1) ((4.3) in Chap-
ter 4).

∞∑
w=1

ST (w) =
∞∑
w=1

P (W = w)
{wαc
βc

[1− Fγ(a;wαc + 1, βc)]

− a[1− Fγ(a;wαc, βc)]
}

(A.1)

Here Fγ stands for the gamma cumulative distribution function and P (W = w)
is defined as ( cf. (4.4) in Chapter 4).

P (W = w) = (λ(1− ε))we−λ(ε/µG+1−ε)

(
1
w!

+
∞∑
h=1

w∑
j=0

[
(ελ/µG)h

h!

×
βhαLL Γ(hαL + j)

(λ(1− ε))j(w − j)!Γ(hαL)j!(βL + 1)hαL+j

])
, (A.2)

The main algorithm utilizes several numerical routines which have to be defined
beforehand. The very first one is the numerical calculation of the incomplete
gamma function, which is defined as

Γ(p, x) =
1

Γ(p)

∫ x

0

tp−1e−tdt.

This part will be used in the calculation of the gamma cdf which can be written
as

Fγ(x;α, β) = Γ(α, βx).

The algorithm itself together with the description of the method precision, can
be found in Shea [1988].

Another numerical routine which will be used in the main algorithm, is the
calculation of the natural logarithm of the gamma function. This part will be used
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for the large factorials (which appear in (A.2)) calculation. The gamma function
is defined as

Γ(x) =
∫ ∞

0

tx−1e−tdt.

When x > 12, the very accurate algorithm for the calculation of log(Γ(x)) is
described in Hart et al. [1968]. When x < 12 it is better to use the algorithm of
Cody and Hillstrom [1967].

Once we have all the numerical algorithms we need, we can start implementing
formula (A.1) in practice. The very first place which ruins the direct application
illusion is the summation index w. In the original convolution formula summation
has to be performed up to infinity. Only in this case the result will be the true
value. Otherwise (if the summation index is less than infinity) the result is only
an approximation.

After analyzing the convolution formulas we found out that the convergence
rate of such summations is quite fast and the summands are obviously decreasing
while tending away from E[W ]. The numerical analysis showed that in case the
user is not interested in the decimal precision, the summation procedure can
stop as soon as the summand value ST (w) is less then 0.01. So, in the main
algorithm there is no fixed value for the summation index w. The summation will
be performed as long as the summand value is larger than 0.01.

According to this strategy the first task is to find those w for which ST (w) >
0.01. We know that E(W ) = λ, which usually is equal to 400). Hence, 400
is taken as the starting value for w. In case ST (w) < 0.01, we check whether
ST (w+ 1) > 0.01 or ST (w− 1) > 0.01. One should continue this procedure until
a value w for which ST (w) > 0.01 is found.

As soon as ST (w) > 0.01 for some w, we can start the main summation
procedure. Summation will be performed both left and right. Basically we define
wl = w and wr = w+ 1 (continue with wl = wl − 1,wr = wr + 1) and sum all the
ST (wl), ST (wr) values which are larger than 0.01. This is the convenient way to
perform such kind of summation.

Next follow several other important aspects about the calculation of ST (w).
Consider the second part of the ST -term, which is defined as

STR(w) =
wαc
βc

[1− Fγ(a;wαc + 1, βc)]− a[1− Fγ(a;wαc, βc)].

Here we have to deal with the calculation of the gamma cdf. For this we utilize
the algorithm of Shea [1988]. The precision aspect is very important here since
the value 1−Fγ has to be multiplied by the numbers a and wαc/βc. Quite often
we deal with the tail of the gamma distribution. The values of the cdf there are
very close to 1 and in case the calculation precision of Fγ is low, it will imply that
the value 1− Fγ can become 0 too early. For example, when 0.999999 is already
assumed to be 1, we have a(1 − Fγ) = 0, whatever the value of a. But in our
situation a can be of the order 106 − 1010, which means that Fγ has to be not
rounded to 1 at least till 0.9999999999. But this is only an example. In general
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the values of a and w do not have an upper bound and thus in the main algorithm
the precision of Fγ has to be defined for each w and a. The algorithm of Shea
[1988] allows to do this by changing the value of parameter "tol".

The first part of ST involves the calculation of P (W = w) which is defined in
(A.2). This is the most difficult part of the algorithm. Clearly, the formula has a
quite complicated structure and it also contains an infinity summation "problem".
Before defining the limits for the summation index h, several difficulties have to
be mentioned which will be faced with while trying to calculate the summands
directly. Here we have to deal with factorials like j! and gamma functions like
Γ(hαL + j). The problem is that j can reach large values like 400 or 600, which
makes it necessary to deal with numbers like 400! or 600! (as well as Γ(400) which
can be written as 399!). The largest number which can be handled in C++ is
about 1.7 × 10308. The number 400! is much larger than that and hence it is
necessary to overcome this problem. The final result will be a "simple" number,
since the huge numbers mentioned occur both in nominators and denominators,
but it is practically not feasible to get the answer directly because of the problems
mentioned above.

One method which can be used to solve the problem is the utilization of the
natural logarithm of gamma function. Each factorial can be written as a gamma
function (according to the identity Γ(n) = (n−1)!) and each gamma function can
be written as an exponent of the gamma natural logarithm. Using this strategy
we can rewrite (A.2) as

P (W = w) = exp

(
− λ(ε/µG + 1− ε) + w log(λ(1− ε))

)

×
∞∑
h=1

w∑
j=0

[
exp

(
h log(ελ/µG) + hαL log(βL) + log(Γ(hαL + j))

− log(Γ(h+ 1))− log(Γ(hαL))− log(Γ(j + 1))

− (hαL + j) log(βL + 1)− j log(λ(1− ε))− log(Γ(w − j + 1))

)]

+ exp

(
− λ(ε/µG + 1− ε) + w log(λ(1− ε))− log(Γ(w + 1))

)
. (A.3)

Now, instead of calculating large factorials separately, we calculate natural loga-
rithms of gamma functions, which are certainly not that extreme.

Having the summands calculation method, we switch back to the summation
index h. We know that h represents the number of groups, hence it is clearly
not necessary to perform summation up to infinity. The typical assumptions for
the parameters of the model are µG = 20, λ = 400 and ε = 0.03, which gives us
E[H] = ελ/µG = 0.6. In that case the probability that a realization h will be large
is very small. Hence we can easily conclude that the summation of the h series will
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not have to involve too many terms. However, it remains to find a specific limit for
the summation index h. To obtain such limits, we return to the general appearance
of (A.1). We see that P (W = w) there is multiplied by STR(w). Both factors are
a function of w (and actually of many other parameters), but the most important
fact is that P (W = w) ∈ (0, 1), while STR(w) can be quite large ( all depends
on the underlying parameters and the precision we would like to achieve). When
STR(w) is large (let say of order 1010), the accuracy of P (W = w) has to be at
least of the same (reversed) order (of order 10−10). This can be achieved by adding
summands one by one, increasing the values of h. Numerical analysis showed that
such convergence is quite stable. This means that the decimal places stabilize one
by one and we can stop the summation as soon as the difference between two steps
is less than the required precision (less than 10−10). Note that in case the needed
precision is not reached, we can get large errors already for a single summand. As
an example we compare P (W = w)×STR(w) = 0.123456789×1010 = 1234567890
and P (W = w) × STR(w) = 0.123879889 × 1010 = 1238798890. The absolute
difference for the single w is 4231000, which is definitely a very significant error.
In most cases the situations explained above are not so extreme, but the total
summation can be very inaccurate if the precision is not controlled at all.

A.2 Situation when C ∼ Gamma and L ∼ IG

In this section we discuss the application of (4.8). All the suggestions and rec-
ommendations which were presented in the previous section in order to get the
final result, are applicable here as well. The difficulties with the application of
(4.8) are similar to the ones in case of (A.2). These are summation to infinity
and huge numbers. The problem of infinite summation was already discussed
in the previous section, therefore, the main issue here is the calculation of the
large factorials, which (as in the previous section) will be solved by utilization of
the natural logarithm of the gamma function. Each factorial can be written as
a gamma function (according to the identity Γ(n) = (n − 1)!) and each gamma
function can be written as an exponent of the gamma natural logarithm. Using
this strategy we can rewrite (4.8) as

P (W = w) = exp(w log(λ(1− ε))− λ(ε/µG + 1− ε))

×

(
exp (− log (Γ (w + 1))) +

∞∑
h=1

w∑
j=0

j−1∑
k=0

exp
(
h log(ελ/µG)

+k log (βL) + j log(hαL) + log (Γ (j + k))

−(hαL/βL){(1 + 2βL)1/2 − 1} − (j + k) log (1 + 2βL) /2
− log (Γ (h+ 1))− k log (2hαL)− log (Γ (j + 1))− log (Γ (j − k))
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− log (Γ (k + 1))− j log (λ(1− ε))− log (Γ (w − j + 1))
))

.

which solves the ’huge numbers’ problem.

A.3 Situation when C ∼ IG and L ∼ Gamma

In this section we discuss the calculation difficulties when the model assumptions
are C ∼ IG and L ∼ Gamma. Most of the problems arise from the calculation
of P (W = w). However, this part was already discussed in Section A1. One
more tricky point is hidden in the expression involving ex1Φ (−x2) (see (4.13))
and it again concerns products of very small and very large numbers. For modern
computers ex1 =∞ if x1 > log(1.7×10308). The situation with Φ (−x2) is similar.
If x2 is large (say 100), most of the numerical algorithms give Φ (−x2) = 0. The
problem occurs while multiplying these two numbers when 1/ exp(x1) is close
to Φ (−x2). If x1 = 3010 and x2 such that Φ (−x2) ≈ e−3000 it is clear that
ex1Φ (−x2) is a quite large number. But it is practically impossible to get this
number accurately by applying direct multiplication. However, we write it as

ex1Φ (−x2) =
ex1

√
2π

∫ ∞
x2

e−u
2/2du =

1√
2π

∫ ∞
x2

e−(u2−2x1)/2du. (A.4)

Hence, instead of calculating ex1Φ (−x2), we calculate (A.4) by using standard
numerical algorithms (i.e. one of the quadrature rules). This solves the multipli-
cation problem.
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Summary

The present thesis considers an advanced actuarial modeling technique which in-
troduces dependence as a natural extension of existing independence models. The
dependence structure considered here, together with classical ways of modeling
insurance, is briefly introduced in Chapter 1. The basic assumption of our model-
ing technique is the possibility of special claims where at once a whole group has
damage. Therefore, we distinguish between simple (or ’individual’) claims and
special (or ’group’) claims. The (so called) dependence model has gone through
several development steps. Starting with the independence model (Model 1) in
three steps (called Model 2, 3 and 4) dependence is introduced in a more and more
flexible and general way. The final Model 4 is the main target of investigation
of the thesis. Chapter 1 briefly discusses all these development steps, introduces
some risk measures, discusses the need of approximations and the influence of
the model and of the approximation and estimation step on the risk measures
considered. In the present research we mostly concentrate on the distribution of
the aggregate sum of claims S, which usually is far from normally distributed,
i.e. not symmetric and having a heavy tail. Therefore the risk measures which
concern the tail behavior of the distributions involved, are of main interest. The
net Stop-Loss premium (SLP ), the variance of the Stop-Loss contract and the
Value at Risk (V aR) are chosen as representative risk measures.

The form of dependence introduced in the thesis is quite new and differs con-
siderably from structures available in literature. Therefore, the structure and
the assumptions of the model have to be motivated. This aspect is covered in
Chapter 2, which is devoted to an illustrative example of the proposed depen-
dence structure. Chapter 3 describes Model 4 in more detail, presents its main
characteristics, discusses the impact of the model parameters (see Section 3.3)
and describes the region of interest for the values of the parameters involved (see
Table 3.7).

Calculation aspects are covered in Chapter 4. There we present several calcu-
lation methods for the chosen risk measures. These are convolutions, approxima-
tions and simulations. The major calculation tool which is used while analyzing
dependence and estimation effects is the approximation, being the most trans-
parent one. The methods of convolutions and simulations are used in testing the
accuracy of the approximations, which is the main topic of Chapter 5. Here we
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carefully analyze the chosen approximations, introduce the retention level for SLP
(and the variance of the Stop-Loss contract) and the representative probabilities
for V aR. All decisions about the accuracy of the approximations are based on
the criterion chosen, which is defined in (5.1) and (5.2). As a result, we present a
rule of thumb for Model 4. The general recommendation is to use the Gamma-IG
approximation for the SLP and the variance of the Stop-Loss contract and the
IG approximation for the V aR whenever the aggregated sum S is modeled by
Model 4. This rule is valid in the given region of parameters of interest, which is
presented in Table 3.7. It is restricted to the distributions under consideration,
which are presented in Table 3.2. The schematic overview of the rule of thumb
for Model 4 is presented in Table 5.3.

In Chapter 6 we present an explicit example of the dependence effect. The
example concerns a concrete line of the insurance business, the so-called workers
compensation insurance. The underlying data of this branch of insurance perfectly
fit our model (dependence structure is present) and, moreover, it was suggested
by the users committee of our STW-project as a potential source of problems
due to dependence. However, the needed structure is not explicitly present in
the available data. Therefore, it only serves as a basis for the construction of the
data set needed. Hence, real data are not used in this chapter, but compared to
Chapter 2 (where all data were simulated), we go a step further here, since real
data are the starting point. This contributes to the reality aspect of the example.
Another goal of the chapter is to discuss the structure of the data which is needed
for the implementation of Model 4. It turns out that the dependence effect can
indeed be very large and that even small dependencies cannot be ignored.

As usual in stochastic modeling, all the parameters which are involved in the
model considered, have to be estimated. Replacing the unknown model param-
eters by their estimates (which are obtained from observed data) will result in
estimation errors. Just as with ignoring the dependence effect, it is too optimistic
to act as if the estimation errors are negligible, unless the number of observations
is large. This topic, the effect of the estimation step, is exactly the issue which
is addressed in Chapter 7. We start with discussing the observations and defin-
ing the estimators of the model parameters, the summary of which is presented
in (7.1). The influence of the estimators on the insurance products (measures)
considered certainly depends on their behavior as a function of the parameters
which are going to be estimated, as well as on the accuracy of the estimators.
Therefore, we consider two points: how fluctuate the quantities considered (V aR
and SLP ) and how accurate are the estimators. The first aspect is covered in
Section 7.2 where we give some impression about the order of magnitude of the
fluctuation of the risk measures by considering their partial derivatives w.r.t. the
model parameters. The second aspect is covered in Section 7.3. There we dis-
cuss the asymptotic behavior of the estimators which later is used in the analysis
of the estimation effect and construction of the confidence bounds for the risk
measures considered. The estimation error is dominated by the part of the pa-
rameters related to the special claims, because by their nature we do not have
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many observations of them. Although restricted to a few parameters, it is seen
that the estimation error may be quite substantial.

Chapter 8 deals with the real data obtained through one of the members
of the users committee of our STW-project. The main goal is to perform a data
analysis, as an illustration of the model implementation: in particular finding ways
to determine dependencies within the data and illustration of the dependence and
estimation effects. As soon as we assume the same distribution for the simple and
special claims sizes, the number of claims becomes the major aspect through which
dependence is introduced. Therefore, the significant challenge is to recognize and
distinguish these two types of claims.

Our method is based on simple linear regression in the context of a QQ-plot
e.g. for daily claims. Since days with special claims have much larger numbers
of claims, the numbers of claims of these days will appear above the one-sided
95%-confidence interval associated with the fitted linear regression line in the QQ-
plot. In a few iteration steps the special days are detected. As such special days
also contain simple claims, the number of simple claims has to be subtracted to
obtain the number of special claims. To test the method we performed a brief
simulation using data from two different normal distributions. The results of the
testing procedure were satisfactory to apply the method.

We finish the chapter with the illustration of the dependence and estimation
effects on the basis of the estimated parameters. The results are in line with the
main message of the thesis: the dependence should not be ignored. The same
holds for the estimation effect.

The last chapter contains the review of the thesis together with recommenda-
tions for future development. It also contains several discussions of the methods
and assumptions which are used in the thesis.





Samenvatting

Dit proefschrift bestudeert een geavanceerde actuariële modelleertechniek waarin
afhankelijkheid als een natuurlijke uitbreiding van bestaande onafhankelijke mo-
dellen wordt geïntroduceerd. De afhankelijkheidsstructuur waar het hier om gaat,
wordt kort geïntroduceerd in Hoofdstuk 1, samen met klassieke manieren om
verzekeringen te modelleren. De basis aanname van onze modelleertechniek is de
mogelijkheid van het vóórkomen van speciale claims waarbij een hele groep tege-
lijkertijd schade heeft. Daarom zullen we enkelvoudige (of ‘individuele’) claims
en speciale (of ‘groep’) claims onderscheiden. Het voorgestelde afhankelijkheids-
model heeft verschillende ontwikkelingsstappen doorlopen. Beginnend met het
onafhankelijke model (Model 1) wordt in drie stappen (die Model 2,3 en 4 wor-
den genoemd) afhankelijkheid ingevoerd op een steeds meer flexibele en algemene
manier. Het uiteindelijke Model 4 is het hoofdonderwerp van het onderzoek in
dit proefschrift. Hoofdstuk 1 bespreekt kort al deze ontwikkelingsstappen, intro-
duceert enkele risicomaten, bespreekt de noodzaak van het gebruik van benaderin-
gen en de invloeden van het model en van de benaderings- en schattingsstap op
de beschouwde risicomaten. In het huidige onderzoek concentreren we ons vooral
op de verdeling van de totale som S van de claims. Deze is meestal verre van
normaal, bijvoorbeeld niet-symmetrisch en met een zware staart. Het gevolg is
dat met name die risicomaten van belang zijn die betrekking hebben op de staart
van de betrokken verdelingen. De netto Stop-Loss premie (SLP ), de variantie
van het Stop-Loss contract en de Value at Risk (V aR) worden daarom gekozen
als representatieve risicomaten.

De vorm van afhankelijkheid die in het proefschrift wordt geïntroduceerd, is
volstrekt nieuw en verschilt aanzienlijk van structuren die in de literatuur beschik-
baar zijn. Daarom dienen de structuur en de veronderstellingen van het model
terdege te worden gemotiveerd. Dit aspect komt aan de orde in Hoofdstuk 2, dat
gewijd is aan een illustratief voorbeeld van de voorgestelde afhankelijkheidsstruc-
tuur. Vervolgens beschrijft Hoofdstuk 3 Model 4 in meer detail, presenteert de
belangrijkste kenmerken ervan, bespreekt de invloed van de model parameters
(zie Paragraaf 3.3) en beschrijft het gebied waarin de parameterwaarden liggen
die in de praktijk van belang zijn (zie Tabel 3.7).

Aspecten met betrekking tot de berekeningen worden behandeld in Hoofd-
stuk 4. Daar presenteren we verscheidene berekeningsmethoden voor de gekozen
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risicomaten. Dit zijn convoluties, benaderingen en simulaties. De belangrijkste
berekeningsmethode die gebruikt wordt bij het analyseren van afhankelijkheid en
schattingseffecten, is die van het gebruik van benaderingen, gezien het feit dat
deze het meest transparant is. De methodes van convolutie en simulatie worden
gebruikt bij het testen van de nauwkeurigheid van de benaderingen, het belang-
rijkste onderwerp van Hoofdstuk 5. Hier analyseren we zorgvuldig de gekozen
benaderingen, voeren we retentieniveaus voor de SLP (en de variantie van het
Stop-Loss contract) in en representatieve kansen voor V aR. Alle beslissingen
omtrent de nauwkeurigheid van de benaderingen worden gebaseerd op het gekozen
criterium, dat gedefinieerd wordt in (5.1) en (5.2). Als gevolg hiervan kunnen we
een vuistregel voor Model 4 formuleren. De algemene aanbeveling is het gebruiken
van de Gamma-IG benadering voor de SLP en de variantie van het Stop-Loss
contract en van de IG benadering voor de V aR, steeds onder de aanname dat de
cumulatieve som S wordt gemodelleerd volgens Model 4. Deze regel is geldig in
het eerder aangegeven parametergebied, zoals gepresenteerd in Tabel 3.7. Verder
is deze regel ook beperkt tot de beschouwde verdelingen, zoals weergegeven in
Tabel 3.2. Het schematisch overzicht van de vuistregel voor Model 4 wordt ge-
presenteerd in Tabel 5.3.

In Hoofdstuk 6 bespreken we een expliciet voorbeeld van het afhankelijkheids-
effect. Dit voorbeeld heeft betrekking op een concreet onderdeel van het verzeke-
ringsbedrijf, de zogeheten werknemers compensatie verzekering. De onderliggende
data bij deze verzekeringstak passen perfect in ons model (afhankelijkheidsstruc-
tuur is aanwezig). Bovendien werd het voorgesteld vanuit de gebruikerscommissie
van ons STW-project, als een mogelijke bron van problemen ten gevolge van
afhankelijkheid. De benodigde structuur is echter niet expliciet aanwezig in de
beschikbare gegevens. Derhalve dient het slechts als basis voor de constructie
van de benodigde dataset. Dus in dit hoofdstuk worden nog steeds niet ‘echte’
data gebruikt, maar in vergelijking met Hoofdstuk 2 (waarin alle gegevens werden
gesimuleerd), gaan we hier een stap verder, omdat reële data wel als uitgangspunt
fungeren. Dit draagt bij aan het realiteitsgehalte van het voorbeeld. Een ander
doel van het hoofdstuk is om uiteen te zetten wat de structuur moet zijn van data
die geschikt zijn voor de uitvoering van Model 4. Het blijkt dat het effect van
afhankelijkheid inderdaad erg groot kan zijn en dat zelfs kleine afhankelijkheden
niet genegeerd kunnen worden.

Zoals gebruikelijk in stochastische modellen, moeten alle parameters die in
het beschouwde model voorkomen, worden geschat. Vervangen van de onbe-
kende parameters in het model door hun schattingen (die worden verkregen uit
waargenomen data), zal resulteren in schattingsfouten. Net als bij het negeren
van de afhankelijkheid, is het te optimistisch om te doen alsof die schattingsfouten
te verwaarlozen zijn, tenzij het aantal waarnemingen groot is. Dit onderwerp, het
effect van de schattingsstap, is precies hetgeen wordt behandeld in Hoofdstuk 7.
We beginnen met het bespreken van de data en het definiëren van de schatters van
de modelparameters, de samenvatting waarvan wordt gepresenteerd in (7.1). De
invloed van de schatters op de verzekeringsproducten (maten) die we beschouwen,
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hangt zowel af van hun gedrag als functie van de te schatten parameters, als van
de nauwkeurigheid van de schatters zelf. Het eerste aspect wordt in Sectie 7.2
bekeken, waar we een indruk geven van de orde van grootte van de fluctuatie
van de rsicomaten door hun partiële afgeleiden m.b.t. de modelparameters te
beschouwen. Het tweede aspect komt in Sectie 7.3 aan de orde. Daar bestu-
deren we het asymptotische gedrag van de schatters en gebruiken dit vervolgens
bij de analyse van het schattingseffect en tevens bij de constructie van betrouw-
baarheidsintervallen voor de beschouwde risicomaten. De schattingsfout wordt
gedomineerd door dat deel van de parameters dat betrekking heeft op de speciale
claims, doordat daar naar de aard der zaak relatief weinig waarnemingen voor
beschikbaar zijn. Hoewel het zich zo dus eigenlijk tot enkele parameters beperkt,
blijkt het schattingseffect toch heel substantieel te kunnen zijn.

Het laatste hoofdstuk houdt zich bezig met echte data, die zijn verkregen via
een van de leden van de gebruikerscommissie van het STW-project. Het belang-
rijkste doel is het uitvoeren van een data-analyse als illustratie van de imple-
mentatie van het model: in het bijzonder het vinden van manieren om afhanke-
lijkheden in de data vast te stellen en een illustratie van effecten van zowel de
afhankelijkheid als de schattingsstap. Zodra we aannemen dat de gewone en de
speciale claimhoogten dezelfde verdeling volgen, wordt het aantal schadegevallen
het belangrijkste aspect in het model waardoor de afhankelijkheid wordt inge-
voerd. Daarom is het een duidelijke uitdaging om deze beide soorten claims te
herkennen en te onderscheiden.

Onze methode is gebaseerd op enkelvoudige lineaire regressie in de context
van een QQ-plot bijvoorbeeld voor dagelijkse claims. Omdat dagen met spe-
ciale claims een veel hoger aantal claims tellen, zal dat aantal op dergelijke da-
gen uitkomen boven het eenzijdige 95%-betrouwbaarheidsinterval dat samenhangt
met de gefitte regressie lijn in de QQ-plot. In een paar iteratiestappen worden de
speciale claims zo gedetecteerd. Omdat zulke speciale dagen ook gewone claims
bevatten, moeten deze van het totaal afgetrokken worden om de hoeveelheid spe-
ciale claims over te houden. Om de methode te testen, hebben we een kleine
simulatie uitgevoerd met waarnemingen uit twee verschillende normale verdelin-
gen. De resultaten zijn bevredigend, zodat de methode toegepast kan worden. We
besluiten het hoofdstuk met het illustreren, op basis van de geschatte parameters,
van de effecten van zowel de afhankelijkheid als het schatten.

Het laatste hoofdstuk biedt een overzicht van het proefschrift, tezamen met
aanbevelingen voor toekomstige ontwikkelingen. Het bevat ook een discussie van
de gebruikte methoden en aannamen in het proefschrift.
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